Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 490: 126-133, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35944701

RESUMO

Heterozygous loss of function mutations in TWIST1 cause Saethre-Chotzen syndrome, which is characterized by craniosynostosis, facial asymmetry, ptosis, strabismus, and distinctive ear appearance. Individuals with syndromic craniosynostosis have high rates of strabismus and ptosis, but the underlying pathology is unknown. Some individuals with syndromic craniosynostosis have been noted to have absence of individual extraocular muscles or abnormal insertions of the extraocular muscles on the globe. Using conditional knock-out alleles for Twist1 in cranial mesenchyme, we test the hypothesis that Twist1 is required for extraocular muscle organization and position, attachment to the globe, and/or innervation by the cranial nerves. We examined the extraocular muscles in conditional Twist1 knock-out animals using Twist2-cre and Pdgfrb-cre drivers. Both are expressed in cranial mesoderm and neural crest. Conditional inactivation of Twist1 using these drivers leads to disorganized extraocular muscles that cannot be reliably identified as specific muscles. Tendons do not form normally at the insertion and origin of these dysplastic muscles. Knock-out of Twist1 expression in tendon precursors, using scleraxis-cre, however, does not alter EOM organization. Furthermore, developing motor neurons, which do not express Twist1, display abnormal axonal trajectories in the orbit in the presence of dysplastic extraocular muscles. Strabismus in individuals with TWIST1 mutations may therefore be caused by abnormalities in extraocular muscle development and secondary abnormalities in innervation and tendon formation.


Assuntos
Acrocefalossindactilia , Craniossinostoses , Estrabismo , Proteína 1 Relacionada a Twist , Acrocefalossindactilia/complicações , Acrocefalossindactilia/genética , Animais , Craniossinostoses/genética , Camundongos , Crista Neural , Músculos Oculomotores , Estrabismo/complicações , Proteína 1 Relacionada a Twist/genética
2.
Mol Cancer ; 22(1): 88, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37246217

RESUMO

BACKGROUND: Neuroblastoma is the most common solid tumor in infants accounting for approximately 15% of all cancer-related deaths. Over 50% of high-risk neuroblastoma relapse, emphasizing the need of novel drug targets and therapeutic strategies. In neuroblastoma, chromosomal gains at chromosome 17q, including IGF2BP1, and MYCN amplification at chromosome 2p are associated with adverse outcome. Recent, pre-clinical evidence indicates the feasibility of direct and indirect targeting of IGF2BP1 and MYCN in cancer treatment. METHODS: Candidate oncogenes on 17q were identified by profiling the transcriptomic/genomic landscape of 100 human neuroblastoma samples and public gene essentiality data. Molecular mechanisms and gene expression profiles underlying the oncogenic and therapeutic target potential of the 17q oncogene IGF2BP1 and its cross-talk with MYCN were characterized and validated in human neuroblastoma cells, xenografts and PDX as well as novel IGF2BP1/MYCN transgene mouse models. RESULTS: We reveal a novel, druggable feedforward loop of IGF2BP1 (17q) and MYCN (2p) in high-risk neuroblastoma. This promotes 2p/17q chromosomal gains and unleashes an oncogene storm resulting in fostered expression of 17q oncogenes like BIRC5 (survivin). Conditional, sympatho-adrenal transgene expression of IGF2BP1 induces neuroblastoma at a 100% incidence. IGF2BP1-driven malignancies are reminiscent to human high-risk neuroblastoma, including 2p/17q-syntenic chromosomal gains and upregulation of Mycn, Birc5, as well as key neuroblastoma circuit factors like Phox2b. Co-expression of IGF2BP1/MYCN reduces disease latency and survival probability by fostering oncogene expression. Combined inhibition of IGF2BP1 by BTYNB, MYCN by BRD inhibitors or BIRC5 by YM-155 is beneficial in vitro and, for BTYNB, also. CONCLUSION: We reveal a novel, druggable neuroblastoma oncogene circuit settling on strong, transcriptional/post-transcriptional synergy of MYCN and IGF2BP1. MYCN/IGF2BP1 feedforward regulation promotes an oncogene storm harboring high therapeutic potential for combined, targeted inhibition of IGF2BP1, MYCN expression and MYCN/IGF2BP1-effectors like BIRC5.


Assuntos
Neuroblastoma , Animais , Humanos , Lactente , Camundongos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes myc , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Recidiva Local de Neoplasia/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo
3.
J Neurosci ; 41(45): 9466-9481, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34642214

RESUMO

TSNARE1, which encodes the protein tSNARE1, is a high-confidence gene candidate for schizophrenia risk, but nothing is known about its cellular or physiological function. We identified the major gene products of TSNARE1 and their cytoplasmic localization and function in endosomal trafficking in cortical neurons. We validated three primary isoforms of TSNARE1 expressed in human brain, all of which encode a syntaxin-like Qa SNARE domain. RNA-sequencing data from adult and fetal human brain suggested that the majority of tSNARE1 lacks a transmembrane domain that is thought to be necessary for membrane fusion. Biochemical data demonstrate that tSNARE1 can compete with Stx12 for incorporation into an endosomal SNARE complex, supporting its possible role as an inhibitory SNARE. Live-cell imaging in cortical neurons from mice of both sexes demonstrated that brain tSNARE1 isoforms localized to the endosomal network. The most abundant brain isoform, tSNARE1c, localized most frequently to Rab7+ late endosomes, and endogenous tSNARE1 displayed a similar localization in human neural progenitor cells and neuroblastoma cells. In mature rat neurons from both sexes, tSNARE1 localized to the dendritic shaft and dendritic spines, supporting a role for tSNARE1 at the postsynapse. Expression of either tSNARE1b or tSNARE1c, which differ only in their inclusion or exclusion of an Myb-like domain, delayed the trafficking of the dendritic endosomal cargo Nsg1 into late endosomal and lysosomal compartments. These data suggest that tSNARE1 regulates endosomal trafficking in cortical neurons, likely by negatively regulating early endosomal to late endosomal trafficking.SIGNIFICANCE STATEMENT Schizophrenia is a severe and polygenic neuropsychiatric disorder. Understanding the functions of high-confidence candidate genes is critical toward understanding how their dysfunction contributes to schizophrenia pathogenesis. TSNARE1 is one of the high-confidence candidate genes for schizophrenia risk, yet nothing was known about its cellular or physiological function. Here we describe the major isoforms of TSNARE1 and their cytoplasmic localization and function in the endosomal network in cortical neurons. Our results are consistent with the hypothesis that the majority of brain tSNARE1 acts as a negative regulator to endolysosomal trafficking.


Assuntos
Córtex Cerebral/metabolismo , Endossomos/metabolismo , Neurônios/metabolismo , Proteínas SNARE/metabolismo , Esquizofrenia/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/metabolismo , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
4.
Hum Mol Genet ; 28(18): 3113-3125, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31211835

RESUMO

Oculomotor synkinesis is the involuntary movement of the eyes or eyelids with a voluntary attempt at a different movement. The chemokine receptor CXCR4 and its ligand CXCL12 regulate oculomotor nerve development; mice with loss of either molecule have oculomotor synkinesis. In a consanguineous family with congenital ptosis and elevation of the ptotic eyelid with ipsilateral abduction, we identified a co-segregating homozygous missense variant (c.772G>A) in ACKR3, which encodes an atypical chemokine receptor that binds CXCL12 and functions as a scavenger receptor, regulating levels of CXCL12 available for CXCR4 signaling. The mutant protein (p.V258M) is expressed and traffics to the cell surface but has a lower binding affinity for CXCL12. Mice with loss of Ackr3 have variable phenotypes that include misrouting of the oculomotor and abducens nerves. All embryos show oculomotor nerve misrouting, ranging from complete misprojection in the midbrain, to aberrant peripheral branching, to a thin nerve, which aberrantly innervates the lateral rectus (as seen in Duane syndrome). The abducens nerve phenotype ranges from complete absence, to aberrant projections within the orbit, to a normal trajectory. Loss of ACKR3 in the midbrain leads to downregulation of CXCR4 protein, consistent with reports that excess CXCL12 causes ligand-induced degradation of CXCR4. Correspondingly, excess CXCL12 applied to ex vivo oculomotor slices causes axon misrouting, similar to inhibition of CXCR4. Thus, ACKR3, through its regulation of CXCL12 levels, is an important regulator of axon guidance in the oculomotor system; complete loss causes oculomotor synkinesis in mice, while reduced function causes oculomotor synkinesis in humans.


Assuntos
Atividade Motora/genética , Desempenho Psicomotor , Receptores CXCR/genética , Receptores CXCR/metabolismo , Sincinesia/etiologia , Sincinesia/metabolismo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Biomarcadores , Análise Mutacional de DNA , Modelos Animais de Doenças , Imunofluorescência , Expressão Gênica , Estudos de Associação Genética , Ligação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Imuno-Histoquímica , Camundongos , Mutação , Linhagem , Polimorfismo de Nucleotídeo Único , Transporte Proteico , Receptores CXCR/química , Sincinesia/diagnóstico , Sincinesia/fisiopatologia
5.
MMWR Morb Mortal Wkly Rep ; 69(23): 693-698, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32525855

RESUMO

Pneumoconioses are preventable occupational lung diseases caused by inhaling dust particles such as coal dust or different types of mineral dusts (1). To assess recent trends in deaths associated with pneumoconiosis, CDC analyzed multiple cause-of-death data*,† for decedents aged ≥15 years for the years 1999-2018, and industry and occupation data collected from 26 states§ for the years 1999, 2003, 2004, and 2007-2013. During 1999-2018, pneumoconiosis deaths decreased by 40.4%, with the exception of pneumoconiosis attributed to other inorganic dusts (e.g., aluminum, bauxite, beryllium, iron, and tin oxide), which increased significantly (p-value for time trend <0.05). The largest observed decreases in pneumoconiosis deaths were for those associated with coal workers' pneumoconiosis (69.6%) and silicosis (53.0%). Asbestosis was the most frequently reported pneumoconiosis and was associated with working in the construction industry. The ongoing occurrence of deaths associated with pneumoconiosis underscores the importance of occupational dust exposure reduction, early case detection, and continued surveillance to monitor trends.


Assuntos
Pneumoconiose/mortalidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Adulto Jovem
6.
Int J Mol Sci ; 21(14)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707690

RESUMO

Neuroblastoma is a common childhood cancer with almost a third of those affected still dying, thus new therapeutic strategies need to be explored. Current experimental therapies focus mostly on inhibiting oncogenic transcription factor signalling. Although LIN28B, DICER and other RNA-binding proteins (RBPs) have reported roles in neuroblastoma development and patient outcome, the role of RBPs in neuroblastoma is relatively unstudied. In order to elucidate novel RBPs involved in MYCN-amplified and other high-risk neuroblastoma subtypes, we performed differential mRNA expression analysis of RBPs in a large primary tumour cohort (n = 498). Additionally, we found via Kaplan-Meier scanning analysis that 685 of the 1483 tested RBPs have prognostic value in neuroblastoma. For the top putative oncogenic candidates, we analysed their expression in neuroblastoma cell lines, as well as summarised their characteristics and existence of chemical inhibitors. Moreover, to help explain their association with neuroblastoma subtypes, we reviewed candidate RBPs' potential as biomarkers, and their mechanistic roles in neuronal and cancer contexts. We found several highly significant RBPs including RPL22L1, RNASEH2A, PTRH2, MRPL11 and AFF2, which remain uncharacterised in neuroblastoma. Although not all RBPs appear suitable for drug design, or carry prognostic significance, we show that several RBPs have strong rationale for inhibition and mechanistic studies, representing an alternative, but nonetheless promising therapeutic strategy in neuroblastoma treatment.


Assuntos
Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Criança , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Oncogenes , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Fatores de Risco
7.
Med Law Rev ; 28(2): 247-269, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31424540

RESUMO

There is a growing body of evidence that supports the view that research participants and the public are concerned about commercial access to health data. Evidence also suggests that attitudes are ameliorated when charity organisations are involved and where research promises to deliver 'public benefit'. To a significant extent, therefore, mechanisms that ensure the public benefit are key to sustaining public and participant support for research access to health data. As a regime founded on the concept of public benefit, charity law provides regulatory and governance mechanisms through which the public benefit of a charity is protected and promoted. This article examines the merits of charity law mechanisms and analyses their significance for governance of commercial access to health data for public benefit, using UK Biobank Ltd, a charitable company limited by guarantee, as an example. The article critically analyses three charity law mechanisms that operate to ensure that an organization providing access to data meets its public benefit requirements: charitable purposes; members' and directors' powers and duties; and accountability via the oversight powers of the Charity Commission and charity proceedings in court. The article concludes that there is potential for the charity model to be the benchmark for governing commercial access to health data for public benefit research, but notes the limitations of the model and recommends the appointment of independent data governance committees to further bolster the charity law framework.


Assuntos
Acesso à Informação/legislação & jurisprudência , Bancos de Espécimes Biológicos/legislação & jurisprudência , Bancos de Espécimes Biológicos/organização & administração , Instituições de Caridade/legislação & jurisprudência , Instituições de Caridade/organização & administração , Comércio/legislação & jurisprudência , Disseminação de Informação/legislação & jurisprudência , Acesso à Informação/psicologia , Conselho Diretor , Humanos , Responsabilidade Social , Curadores , Reino Unido
8.
Cell Mol Life Sci ; 70(15): 2657-75, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23069990

RESUMO

The insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1, IGF2BP2, IGF2BP3) belong to a conserved family of RNA-binding, oncofetal proteins. Several studies have shown that these proteins act in various important aspects of cell function, such as cell polarization, migration, morphology, metabolism, proliferation and differentiation. In this review, we discuss the IGF2BP family's role in cancer biology and how this correlates with their proposed functions during embryogenesis. IGF2BPs are mainly expressed in the embryo, in contrast with comparatively lower or negotiable levels in adult tissues. IGF2BP1 and IGF2BP3 have been found to be re-expressed in several aggressive cancer types. Control of IGF2BPs' expression is not well understood; however, let-7 microRNAs, ß-catenin (CTNNB1) and MYC have been proposed to be involved in their regulation. In contrast to many other RNA-binding proteins, IGF2BPs are almost exclusively observed in the cytoplasm where they associate with target mRNAs in cytoplasmic ribonucleoprotein complexes (mRNPs). During development, IGF2BPs are required for proper nerve cell migration and morphological development, presumably involving the control of cytoskeletal remodeling and dynamics, respectively. Likewise, IGF2BPs modulate cell polarization, adhesion and migration in tumor-derived cells. Moreover, they are highly associated with cancer metastasis and the expression of oncogenic factors (KRAS, MYC and MDR1). However, a pro-metastatic role of IGF2BPs remains controversial due to the lack of 'classical' in vivo studies. Nonetheless, IGF2BPs could provide valuable targets in cancer treatment with many of their in vivo roles to be fully elucidated.


Assuntos
Desenvolvimento Embrionário/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Modelos Biológicos , Neoplasias/fisiopatologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Grânulos Citoplasmáticos/metabolismo , Humanos , Família Multigênica/genética , Neoplasias/metabolismo , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/metabolismo , beta Catenina/metabolismo
9.
Bioorg Med Chem Lett ; 23(13): 3826-32, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23707258

RESUMO

CCG-1423 (1) is a novel inhibitor of Rho/MKL1/SRF-mediated gene transcription that inhibits invasion of PC-3 prostate cancer cells in a Matrigel model of metastasis. We recently reported the design and synthesis of conformationally restricted analogs (e.g., 2) with improved selectivity for inhibiting invasion versus acute cytotoxicity. In this study we conducted a survey of aromatic substitution with the goal of improving physicochemical parameters (e.g., ClogP, MW) for future efficacy studies in vivo. Two new compounds were identified that attenuated cytotoxicity even further, and were fourfold more potent than 2 at inhibiting PC-3 cell migration in a scratch wound assay. One of these (8a, CCG-203971, IC50=4.2 µM) was well tolerated in mice for 5 days at 100mg/kg/day i.p., and was able to achieve plasma levels exceeding the migration IC50 for up to 3 h.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Ácidos Nipecóticos/farmacologia , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Fator de Resposta Sérica/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Anilidas/síntese química , Anilidas/química , Anilidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzamidas/síntese química , Benzamidas/química , Benzamidas/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Estrutura Molecular , Metástase Neoplásica/tratamento farmacológico , Ácidos Nipecóticos/síntese química , Ácidos Nipecóticos/química , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Relação Estrutura-Atividade , Transativadores , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
10.
J Pathol ; 226(3): 451-62, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22009481

RESUMO

Retinoid therapy is used for chemo-prevention in immuno-suppressed patients at high risk of developing skin cancer. The retinoid signalling molecule, tripartite motif protein 16 (TRIM16), is a regulator of keratinocyte differentiation and a tumour suppressor in retinoid-sensitive neuroblastoma. We sought to determine the role of TRIM16 in skin squamous cell carcinoma (SCC) pathogenesis. We have shown that TRIM16 expression was markedly reduced during the histological progression from normal skin to actinic keratosis and SCC. SCC cell lines exhibited lower cytoplasmic and nuclear TRIM16 expression compared with primary human keratinocyte (PHK) cells due to reduced TRIM16 protein stability. Overexpressed TRIM16 translocated to the nucleus, inducing growth arrest and cell differentiation. In SCC cells, TRIM16 bound to and down regulated nuclear E2F1, this is required for cell replication. Retinoid treatment increased nuclear TRIM16 expression in retinoid-sensitive PHK cells, but not in retinoid-resistant SCC cells. Overexpression of TRIM16 reduced SCC cell migration, which required the C-terminal RET finger protein (RFP)-like domain of TRIM16. The mesenchymal intermediate filament protein, vimentin, was directly bound and down-regulated by TRIM16 and was required for TRIM16-reduced cell migration. Taken together, our data suggest that loss of TRIM16 expression plays an important role in the development of cutaneous SCC and is a determinant of retinoid sensitivity.


Assuntos
Carcinoma de Células Escamosas/etiologia , Proteínas de Ligação a DNA/metabolismo , Neoplasias Cutâneas/etiologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Movimento Celular/fisiologia , Proliferação de Células , Transformação Celular Neoplásica/patologia , Fármacos Dermatológicos/farmacologia , Regulação para Baixo , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Isotretinoína/farmacologia , Ligação Proteica , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Proteínas com Motivo Tripartido , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases , Vimentina/metabolismo
11.
Beilstein J Org Chem ; 9: 966-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23766813

RESUMO

CCG-1423 and related analogues represent a new class of inhibitors of Rho/MKL1/SRF-mediated gene transcription, a pathway that has been implicated in both cancer and fibrosis. The molecular target for these compounds is unknown. To facilitate its identification, a series of tag-free photoaffinity probes was designed and synthesized, each one containing a photoactivatable group and an acetylenic end group for subsequent attachment to a fluorescent tag using click chemistry. All were confirmed to maintain biological activity in a cell-based assay for inhibition of SRE-Luc expression. The functional activity of the most potent probe 24 was further confirmed in an assay for PC-3 cell migration. Photolysis of 24 in intact PC-3 cells followed by cell lysis, click ligation of a fluorescent dye, and gel electrophoresis revealed specific labeling of a single 24 kDa band that could be blocked with an active competitor. Future work will focus on identifying the labeled protein(s).

12.
Front Mol Biosci ; 10: 1148501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325471

RESUMO

Background: Cystic fibrosis (CF) is caused by a wide spectrum of mutations in the CF transmembrane conductance regulator (CFTR) gene, with some leading to non-classical clinical presentations. We present an integrated in vivo, in silico and in vitro investigation of an individual with CF carrying the rare Q1291H-CFTR allele and the common F508del allele. At age 56 years, the participant had obstructive lung disease and bronchiectasis, qualifying for Elexacaftor/Tezacaftor/Ivacaftor (ETI) CFTR modulator treatment due to their F508del allele. Q1291H CFTR incurs a splicing defect, producing both a normally spliced but mutant mRNA isoform and a misspliced isoform with a premature termination codon, causing nonsense mediated decay. The effectiveness of ETI in restoring Q1291H-CFTR is largely unknown. Methods: We collected clinical endpoint measurements, including forced expiratory volume in 1 s percent predicted (FEV1pp) and body mass index (BMI), and examined medical history. In silico simulations of the Q1291H-CFTR were compared to Q1291R, G551D, and wild-type (WT)-CFTR. We quantified relative Q1291H CFTR mRNA isoform abundance in patient-derived nasal epithelial cells. Differentiated pseudostratified airway epithelial cell models at air liquid interface were created and ETI treatment impact on CFTR was assessed by electrophysiology assays and Western blot. Results: The participant ceased ETI treatment after 3 months due to adverse events and no improvement in FEV1pp or BMI. In silico simulations of Q1291H-CFTR identified impairment of ATP binding similar to known gating mutants Q1291R and G551D-CFTR. Q1291H and F508del mRNA transcripts composed 32.91% and 67.09% of total mRNA respectively, indicating 50.94% of Q1291H mRNA was misspliced and degraded. Mature Q1291H-CFTR protein expression was reduced (3.18% ± 0.60% of WT/WT) and remained unchanged with ETI. Baseline CFTR activity was minimal (3.45 ± 0.25 µA/cm2) and not enhanced with ETI (5.73 ± 0.48 µA/cm2), aligning with the individual's clinical evaluation as a non-responder to ETI. Conclusion: The combination of in silico simulations and in vitro theratyping in patient-derived cell models can effectively assess CFTR modulator efficacy for individuals with non-classical CF manifestations or rare CFTR mutations, guiding personalized treatment strategies and optimizing clinical outcomes.

13.
Cell Genom ; 3(10): 100404, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37868037

RESUMO

Genome-wide association studies (GWASs) have successfully identified 145 genomic regions that contribute to schizophrenia risk, but linkage disequilibrium makes it challenging to discern causal variants. We performed a massively parallel reporter assay (MPRA) on 5,173 fine-mapped schizophrenia GWAS variants in primary human neural progenitors and identified 439 variants with allelic regulatory effects (MPRA-positive variants). Transcription factor binding had modest predictive power, while fine-map posterior probability, enhancer overlap, and evolutionary conservation failed to predict MPRA-positive variants. Furthermore, 64% of MPRA-positive variants did not exhibit expressive quantitative trait loci signature, suggesting that MPRA could identify yet unexplored variants with regulatory potentials. To predict the combinatorial effect of MPRA-positive variants on gene regulation, we propose an accessibility-by-contact model that combines MPRA-measured allelic activity with neuronal chromatin architecture.

14.
Cell Biosci ; 13(1): 132, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480151

RESUMO

BACKGROUND: Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-ß levels and EMT signaling. Given that many drugs targeting TGF-ß have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-ß/EMT axis. RESULTS: Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-ß and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-ß levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-ß/SMAD2&3) and non-canonical (TGF-ß/PI3K/AKT, TGF-ß/RAS/RAF/MEK/ERK, and TGF-ß/WNT/ß-catenin) TGF-ß signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, ß-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. CONCLUSIONS: Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-ß and inhibiting EMT in a diverse range of cancers.

15.
Nat Genet ; 55(7): 1149-1163, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386251

RESUMO

Hereditary congenital facial paresis type 1 (HCFP1) is an autosomal dominant disorder of absent or limited facial movement that maps to chromosome 3q21-q22 and is hypothesized to result from facial branchial motor neuron (FBMN) maldevelopment. In the present study, we report that HCFP1 results from heterozygous duplications within a neuron-specific GATA2 regulatory region that includes two enhancers and one silencer, and from noncoding single-nucleotide variants (SNVs) within the silencer. Some SNVs impair binding of NR2F1 to the silencer in vitro and in vivo and attenuate in vivo enhancer reporter expression in FBMNs. Gata2 and its effector Gata3 are essential for inner-ear efferent neuron (IEE) but not FBMN development. A humanized HCFP1 mouse model extends Gata2 expression, favors the formation of IEEs over FBMNs and is rescued by conditional loss of Gata3. These findings highlight the importance of temporal gene regulation in development and of noncoding variation in rare mendelian disease.


Assuntos
Paralisia Facial , Animais , Camundongos , Paralisia Facial/genética , Paralisia Facial/congênito , Paralisia Facial/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Neurônios Motores/metabolismo , Neurogênese , Neurônios Eferentes
16.
Invest Ophthalmol Vis Sci ; 63(10): 4, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36083589

RESUMO

Purpose: To determine if extraocular muscles (EOMs) from mice with nystagmus show abnormalities in myofiber composition and innervation, as seen in EOMs from human nystagmus patients, and to determine when in development those changes occur. Methods: Balb/c albino mice were crossed to pigmented mice to generate heterozygous mice, which were mated to create experimental litters containing albinos and wild-type controls. Orbits were harvested from adult animals (12 weeks old); on postnatal day (P)0, P10, P14, and P21; and from 6-week-old animals. EOM sections were collected from the intraorbital portion of the muscles. Sections were immunostained for slow and fast myosin and for neuromuscular junctions (NMJs). The proportion of each myofiber subtype and the density and size of NMJs were quantified. Initial innervation patterns were assessed using whole-mount immunostaining of embryonic day (E)13.5 embryos expressing IslMN:GFP. Results: Adult albino EOMs display an increased proportion of slow myofibers, larger slow myofibers, and a decreased density of NMJs-similar to human nystagmus patients. The percentage of NMJs on slow myofibers is also lower in albino animals. The initial innervation pattern of the incoming ocular motor neurons is normal in E13.5 albino embryos. Differences in the proportion of slow and fast myofiber subtypes are present as early as P14, and a lower percentage of NMJs on slow myofibers is present by P21. There is a lower density of NMJs on albino EOMs as early as P10, prior to eye opening. Conclusions: Changes in NMJ development observed before eye opening indicate that nystagmus is not solely secondary to poor vision.


Assuntos
Nistagmo Patológico , Músculos Oculomotores , Adulto , Animais , Modelos Animais de Doenças , Olho , Humanos , Camundongos , Neurônios Motores , Junção Neuromuscular , Músculos Oculomotores/inervação
17.
J Neurodev Disord ; 14(1): 50, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085003

RESUMO

A growing number of variants associated with risk for neurodevelopmental disorders have been identified by genome-wide association and whole genome sequencing studies. As common risk variants often fall within large haplotype blocks covering long stretches of the noncoding genome, the causal variants within an associated locus are often unknown. Similarly, the effect of rare noncoding risk variants identified by whole genome sequencing on molecular traits is seldom known without functional assays. A massively parallel reporter assay (MPRA) is an assay that can functionally validate thousands of regulatory elements simultaneously using high-throughput sequencing and barcode technology. MPRA has been adapted to various experimental designs that measure gene regulatory effects of genetic variants within cis- and trans-regulatory elements as well as posttranscriptional processes. This review discusses different MPRA designs that have been or could be used in the future to experimentally validate genetic variants associated with neurodevelopmental disorders. Though MPRA has limitations such as it does not model genomic context, this assay can help narrow down the underlying genetic causes of neurodevelopmental disorders by screening thousands of sequences in one experiment. We conclude by describing future directions of this technique such as applications of MPRA for gene-by-environment interactions and pharmacogenetics.


Assuntos
Estudo de Associação Genômica Ampla , Sequências Reguladoras de Ácido Nucleico , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
18.
Front Oncol ; 11: 647737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026620

RESUMO

MYCN gene amplification and upregulated expression are major hallmarks in the progression of high-risk neuroblastoma. MYCN expression and function in modulating gene synthesis in neuroblastoma is controlled at virtually every level, including poorly understood regulation at the post-transcriptional level. MYCN modulates the expression of various microRNAs including the miR-17-92 cluster. MYCN mRNA expression itself is subjected to the control by miRNAs, most prominently the miR-17-92 cluster that balances MYCN expression by feed-back regulation. This homeostasis seems disturbed in neuroblastoma where MYCN upregulation coincides with severely increased expression of the miR-17-92 cluster. In the presented study, we applied high-throughput next generation sequencing to unravel the miRNome in a cohort of 97 neuroblastomas, representing all clinical stages. Aiming to reveal the MYCN-dependent miRNome, we evaluate miRNA expression in MYCN-amplified as well as none amplified tumor samples. In correlation with survival data analysis of differentially expressed miRNAs, we present various putative oncogenic as well as tumor suppressive miRNAs in neuroblastoma. Using microRNA trapping by RNA affinity purification, we provide a comprehensive view of MYCN-regulatory miRNAs in neuroblastoma-derived cells, confirming a pivotal role of the miR-17-92 cluster and moderate association by the let-7 miRNA family. Attempting to decipher how MYCN expression escapes elevated expression of inhibitory miRNAs, we present evidence that RNA-binding proteins like the IGF2 mRNA binding protein 1 reduce miRNA-directed downregulation of MYCN in neuroblastoma. Our findings emphasize the potency of post-transcriptional regulation of MYCN in neuroblastoma and unravel new avenues to pursue inhibition of this potent oncogene.

19.
Cancer Res ; 81(13): 3431-3440, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34228629

RESUMO

RNA N6 -methyladenosine (m6A) modification occurs in approximately 25% of mRNAs at the transcriptome-wide level. RNA m6A is regulated by the RNA m6A methyltransferases methyltransferase-like 3 (METTL3), METTL14, and METTL16 (writers), demethylases FTO and ALKBH5 (erasers), and binding proteins YTHDC1-2, YTHDF1-3, IGF2BP1-3, and SND1 (readers). These RNA m6A modification proteins are frequently upregulated or downregulated in human cancer tissues and are often associated with poor patient prognosis. By modulating pre-mRNA splicing, mRNA nuclear export, decay, stability, and translation of oncogenic and tumor suppressive transcripts, RNA m6A modification proteins regulate cancer cell proliferation, survival, migration, invasion, tumor initiation, progression, metastasis, and sensitivity to anticancer therapies. Importantly, small-molecule activators of METTL3, as well as inhibitors of METTL3, FTO, ALKBH5, and IGF2BP1 have recently been identified and have shown considerable anticancer effects when administered alone or in combination with other anticancer agents, both in vitro and in mouse models of human cancers. Future compound screening and design of more potent and selective RNA m6A modification protein inhibitors and activators are expected to provide novel anticancer agents, appropriate for clinical trials in patients with cancer tissues harboring aberrant RNA m6A modification protein expression or RNA m6A modification protein-induced resistance to cancer therapy.


Assuntos
Adenosina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/patologia , RNA/química , Adenosina/química , Animais , Desmetilação , Humanos , Metilação , Neoplasias/tratamento farmacológico , Neoplasias/genética
20.
Biomater Res ; 25(1): 7, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789768

RESUMO

BACKGROUND: Understanding the regional vascular delivery of particles to tumour sites is a prerequisite for developing new diagnostic and therapeutic composites for treatment of oncology patients. We describe a novel imageable 67Ga-radiolabelled polymer composite that is biocompatible in an animal tumour model and can be used for preclinical imaging investigations of the transit of different sized particles through arterial networks of normal and tumour-bearing organs. RESULTS: Radiolabelling of polymer microspheres with 67Ga was achieved using a simple mix and wash method, with tannic acid as an immobilising agent. Final in vitro binding yields after autoclaving averaged 94.7%. In vivo stability of the composite was demonstrated in New Zealand white rabbits by intravenous administration, and intrahepatic artery instillations were made in normal and VX2 tumour implanted rabbit livers. Stability of radiolabel was sufficient for rabbit lung and liver imaging over at least 3 hours and 1 hour respectively, with lung retention of radiolabel over 91%, and retention in both normal and VX2 implanted livers of over 95%. SPECT-CT imaging of anaesthetised animals and planar imaging of excised livers showed visible accumulation of radiolabel in tumours. Importantly, microsphere administration and complete liver dispersal was more easily achieved with 8 µm diameter MS than with 30 µm MS, and the smaller microspheres provided more distinct and localised tumour imaging. CONCLUSION: This method of producing 67Ga-radiolabelled polymer microspheres is suitable for SPECT-CT imaging of the regional vascular delivery of microspheres to tumour sites in animal models. Sharper distinction of model tumours from normal liver was obtained with smaller MS, and tumour resolution may be further improved by the use of 68Ga instead of 67Ga, to enable PET imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA