Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 179(1): 165-179.e18, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31539494

RESUMO

The three-dimensional organization of chromosomes can have a profound impact on their replication and expression. The chromosomes of higher eukaryotes possess discrete compartments that are characterized by differing transcriptional activities. Contrastingly, most bacterial chromosomes have simpler organization with local domains, the boundaries of which are influenced by gene expression. Numerous studies have revealed that the higher-order architectures of bacterial and eukaryotic chromosomes are dependent on the actions of structural maintenance of chromosomes (SMC) superfamily protein complexes, in particular, the near-universal condensin complex. Intriguingly, however, many archaea, including members of the genus Sulfolobus do not encode canonical condensin. We describe chromosome conformation capture experiments on Sulfolobus species. These reveal the presence of distinct domains along Sulfolobus chromosomes that undergo discrete and specific higher-order interactions, thus defining two compartment types. We observe causal linkages between compartment identity, gene expression, and binding of a hitherto uncharacterized SMC superfamily protein that we term "coalescin."


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos de Archaea/metabolismo , Sulfolobus/citologia , Sulfolobus/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos de Archaea/genética , Replicação do DNA/genética , DNA Arqueal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Loci Gênicos/genética , Modelos Genéticos , Complexos Multiproteicos/metabolismo , Plasmídeos/genética , Ligação Proteica/genética , Transcrição Gênica
2.
Cell ; 161(3): 513-525, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25892223

RESUMO

Loading of the ring-shaped Mcm2-7 replicative helicase around DNA licenses eukaryotic origins of replication. During loading, Cdc6, Cdt1, and the origin-recognition complex (ORC) assemble two heterohexameric Mcm2-7 complexes into a head-to-head double hexamer that facilitates bidirectional replication initiation. Using multi-wavelength single-molecule fluorescence to monitor the events of helicase loading, we demonstrate that double-hexamer formation is the result of sequential loading of individual Mcm2-7 complexes. Loading of each Mcm2-7 molecule involves the ordered association and dissociation of distinct Cdc6 and Cdt1 proteins. In contrast, one ORC molecule directs loading of both helicases in each double hexamer. Based on single-molecule FRET, arrival of the second Mcm2-7 results in rapid double-hexamer formation that anticipates Cdc6 and Cdt1 release, suggesting that Mcm-Mcm interactions recruit the second helicase. Our findings reveal the complex protein dynamics that coordinate helicase loading and indicate that distinct mechanisms load the oppositely oriented helicases that are central to bidirectional replication initiation.


Assuntos
Replicação do DNA , Proteínas de Manutenção de Minicromossomo/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/isolamento & purificação , Proteínas de Ciclo Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Manutenção de Minicromossomo/isolamento & purificação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia
3.
Mol Cell ; 81(3): 473-487.e6, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33382983

RESUMO

Chromosome conformation capture (3C) technologies have identified topologically associating domains (TADs) and larger A/B compartments as two salient structural features of eukaryotic chromosomes. These structures are sculpted by the combined actions of transcription and structural maintenance of chromosomes (SMC) superfamily proteins. Bacterial chromosomes fold into TAD-like chromosomal interaction domains (CIDs) but do not display A/B compartment-type organization. We reveal that chromosomes of Sulfolobus archaea are organized into CID-like topological domains in addition to previously described larger A/B compartment-type structures. We uncover local rules governing the identity of the topological domains and their boundaries. We also identify long-range loop structures and provide evidence of a hub-like structure that colocalizes genes involved in ribosome biogenesis. In addition to providing high-resolution descriptions of archaeal chromosome architectures, our data provide evidence of multiple modes of organization in prokaryotic chromosomes and yield insights into the evolution of eukaryotic chromosome conformation.


Assuntos
Cromatina/genética , Cromossomos de Archaea , DNA Arqueal/genética , Sulfolobus acidocaldarius/genética , Sulfolobus solfataricus/genética , Compartimento Celular , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica em Archaea , Motivos de Nucleotídeos , Ribossomos/genética , Ribossomos/metabolismo , Sulfolobus acidocaldarius/metabolismo , Sulfolobus solfataricus/metabolismo , Transcrição Gênica
4.
Cell ; 146(1): 80-91, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21729781

RESUMO

Proper eukaryotic DNA replication requires temporal separation of helicase loading from helicase activation and replisome assembly. Using an in vitro assay for eukaryotic origin-dependent replication initiation, we investigated the control of these events. After helicase loading, we found that the Dbf4-dependent Cdc7 kinase (DDK) but not S phase cyclin-dependent kinase (S-CDK) is required for the initial origin recruitment of Sld3 and the Cdc45 helicase-activating protein. Likewise, in vivo, DDK drives early-firing-origin recruitment of Cdc45 before activation of S-CDK. After S-CDK activation, a second helicase-activating protein (GINS) and the remainder of the replisome are recruited to the origin. Finally, recruitment of lagging but not leading strand DNA polymerases depends on Mcm10 and DNA unwinding. Our studies identify distinct roles for DDK and S-CDK during helicase activation and support a model in which the leading strand DNA polymerase is recruited prior to origin DNA unwinding and RNA primer synthesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , DNA Polimerase I/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fase G1 , Proteínas Nucleares/metabolismo , Origem de Replicação , Fase S , Saccharomyces cerevisiae/citologia
5.
Proc Natl Acad Sci U S A ; 120(29): e2221484120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428921

RESUMO

Eukaryotic DNA replication must occur exactly once per cell cycle to maintain cell ploidy. This outcome is ensured by temporally separating replicative helicase loading (G1 phase) and activation (S phase). In budding yeast, helicase loading is prevented outside of G1 by cyclin-dependent kinase (CDK) phosphorylation of three helicase-loading proteins: Cdc6, the Mcm2-7 helicase, and the origin recognition complex (ORC). CDK inhibition of Cdc6 and Mcm2-7 is well understood. Here we use single-molecule assays for multiple events during origin licensing to determine how CDK phosphorylation of ORC suppresses helicase loading. We find that phosphorylated ORC recruits a first Mcm2-7 to origins but prevents second Mcm2-7 recruitment. The phosphorylation of the Orc6, but not of the Orc2 subunit, increases the fraction of first Mcm2-7 recruitment events that are unsuccessful due to the rapid and simultaneous release of the helicase and its associated Cdt1 helicase-loading protein. Real-time monitoring of first Mcm2-7 ring closing reveals that either Orc2 or Orc6 phosphorylation prevents Mcm2-7 from stably encircling origin DNA. Consequently, we assessed formation of the MO complex, an intermediate that requires the closed-ring form of Mcm2-7. We found that ORC phosphorylation fully inhibits MO complex formation and we provide evidence that this event is required for stable closing of the first Mcm2-7. Our studies show that multiple steps of helicase loading are impacted by ORC phosphorylation and reveal that closing of the first Mcm2-7 ring is a two-step process started by Cdt1 release and completed by MO complex formation.


Assuntos
Complexo de Reconhecimento de Origem , Proteínas de Saccharomyces cerevisiae , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Fosforilação , Origem de Replicação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Quinases Ciclina-Dependentes/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(30): e2305556120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463200

RESUMO

During origin licensing, the eukaryotic replicative helicase Mcm2-7 forms head-to-head double hexamers to prime origins for bidirectional replication. Recent single-molecule and structural studies revealed that one molecule of the helicase loader ORC (origin recognition complex) can sequentially load two Mcm2-7 hexamers to ensure proper head-to-head helicase alignment. To perform this task, ORC must release from its initial high-affinity DNA-binding site and "flip" to bind a weaker, inverted DNA site. However, the mechanism of this binding-site switch remains unclear. In this study, we used single-molecule Förster resonance energy transfer to study the changing interactions between DNA and ORC or Mcm2-7. We found that the loss of DNA bending that occurs during DNA deposition into the Mcm2-7 central channel increases the rate of ORC dissociation from DNA. Further studies revealed temporally controlled DNA sliding of helicase-loading intermediates and that the first sliding complex includes ORC, Mcm2-7, and Cdt1. We demonstrate that sequential events of DNA unbending, Cdc6 release, and sliding lead to a stepwise decrease in ORC stability on DNA, facilitating ORC dissociation from its strong binding site during site switching. In addition, the controlled sliding we observed provides insight into how ORC accesses secondary DNA-binding sites at different locations relative to the initial binding site. Our study highlights the importance of dynamic protein-DNA interactions in the loading of two oppositely oriented Mcm2-7 helicases to ensure bidirectional DNA replication.


Assuntos
Replicação do DNA , Proteínas de Saccharomyces cerevisiae , Origem de Replicação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , DNA/genética , DNA/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo
7.
Mol Microbiol ; 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38404013

RESUMO

While there is a considerable body of knowledge regarding the molecular and structural biology and biochemistry of archaeal information processing machineries, far less is known about the nature of the substrate for these machineries-the archaeal nucleoid. In this article, we will describe recent advances in our understanding of the three-dimensional organization of the chromosomes of model organisms in the crenarchaeal phylum.

8.
Annu Rev Microbiol ; 74: 65-80, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32503372

RESUMO

It is now well recognized that the information processing machineries of archaea are far more closely related to those of eukaryotes than to those of their prokaryotic cousins, the bacteria. Extensive studies have been performed on the structure and function of the archaeal DNA replication origins, the proteins that define them, and the macromolecular assemblies that drive DNA unwinding and nascent strand synthesis. The results from various archaeal organisms across the archaeal domain of life show surprising levels of diversity at many levels-ranging from cell cycle organization to chromosome ploidy to replication mode and nature of the replicative polymerases. In the following, we describe recent advances in the field, highlighting conserved features and lineage-specific innovations.


Assuntos
Archaea/genética , Proteínas Arqueais/genética , Replicação do DNA , DNA Arqueal/genética , Archaea/fisiologia , DNA Arqueal/fisiologia , Modelos Moleculares , Ligação Proteica
9.
Nucleic Acids Res ; 51(19): 10506-10518, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37739410

RESUMO

Replication protein A (RPA) binds single-stranded DNA (ssDNA) and serves critical functions in eukaryotic DNA replication, the DNA damage response, and DNA repair. During DNA replication, RPA is required for extended origin DNA unwinding and DNA synthesis. To determine the requirements for RPA during these processes, we tested ssDNA-binding proteins (SSBs) from different domains of life in reconstituted Saccharomyces cerevisiae origin unwinding and DNA replication reactions. Interestingly, Escherichia coli SSB, but not T4 bacteriophage Gp32, fully substitutes for RPA in promoting origin DNA unwinding. Using RPA mutants, we demonstrated that specific ssDNA-binding properties of RPA are required for origin unwinding but that its protein-interaction domains are dispensable. In contrast, we found that each of these auxiliary RPA domains have distinct functions at the eukaryotic replication fork. The Rfa1 OB-F domain negatively regulates lagging-strand synthesis, while the Rfa2 winged-helix domain stimulates nascent strand initiation. Together, our findings reveal a requirement for specific modes of ssDNA binding in the transition to extensive origin DNA unwinding and identify RPA domains that differentially impact replication fork function.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA , Proteína de Replicação A , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ligação Proteica , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Bacteriófago T4/metabolismo
10.
Genes Dev ; 31(3): 291-305, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28270517

RESUMO

Activation of the Mcm2-7 replicative DNA helicase is the committed step in eukaryotic DNA replication initiation. Although Mcm2-7 activation requires binding of the helicase-activating proteins Cdc45 and GINS (forming the CMG complex), an additional protein, Mcm10, drives initial origin DNA unwinding by an unknown mechanism. We show that Mcm10 binds a conserved motif located between the oligonucleotide/oligosaccharide fold (OB-fold) and A subdomain of Mcm2. Although buried in the interface between these domains in Mcm2-7 structures, mutations predicted to separate the domains and expose this motif restore growth to conditional-lethal MCM10 mutant cells. We found that, in addition to stimulating initial DNA unwinding, Mcm10 stabilizes Cdc45 and GINS association with Mcm2-7 and stimulates replication elongation in vivo and in vitro. Furthermore, we identified a lethal allele of MCM10 that stimulates initial DNA unwinding but is defective in replication elongation and CMG binding. Our findings expand the roles of Mcm10 during DNA replication and suggest a new model for Mcm10 function as an activator of the CMG complex throughout DNA replication.


Assuntos
Replicação do DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Elongação da Transcrição Genética , Sequência de Aminoácidos , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Origem de Replicação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
11.
J Infect Dis ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636496

RESUMO

Respiratory syncytial virus (RSV) causes severe infections in infants, immunocompromised or elderly individuals resulting in annual epidemics of respiratory disease. Currently, limited clinical surveillance and the lack of predictable seasonal dynamics limits the public health response. Wastewater-based epidemiology (WBE) has recently been used globally as a key metric in determining prevalence of SARS-CoV-2 in the community but its application to other respiratory viruses is limited. In this study, we present an integrated genomic WBE approach, applying RT-qPCR and partial G-gene sequencing to track RSV levels and variants in the community. We report increasing detection of RSV in wastewater concomitant with increasing numbers of positive clinical cases. Analysis of wastewater-derived RSV sequences permitted identification of distinct circulating lineages within and between seasons. Altogether, our genomic WBE platform has the potential to complement ongoing global surveillance and aid the management of RSV by informing the timely deployment of pharmaceutical and non-pharmaceutical interventions.

12.
Chemistry ; 30(8): e202303335, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37971151

RESUMO

The cytochrome P450 monooxygenases (CYPs) are a class of heme-thiolate enzymes that insert oxygen into unactivated C-H bonds. These enzymes can be converted into peroxygenases via protein engineering, which enables their activity to occur using hydrogen peroxide (H2 O2 ) without the requirement for additional nicotinamide co-factors or partner proteins. Here, we demonstrate that soaking crystals of an engineered P450 peroxygenase with H2 O2 enables the enzymatic reaction to occur within the crystal. Crystals of the designed P450 peroxygenase, the T252E mutant of CYP199A4, in complex with 4-methoxybenzoic acid were soaked with different concentrations of H2 O2 for varying times to initiate the in crystallo O-demethylation reaction. Crystal structures of T252E-CYP199A4 showed a distinct loss of electron density that was consistent with the O-demethylated metabolite, 4-hydroxybenzoic acid. A new X-ray crystal structure of this enzyme with the 4-hydroxybenzoic acid product was obtained to enable comparison alongside the existing substrate-bound structure. The visualisation of enzymatic catalysis in action is challenging in structural biology and the ability to initiate the reactions of P450 enzymes, in crystallo by simply soaking crystals with H2 O2 will enable new structural biology methods and techniques to be applied to study their mechanism of action.


Assuntos
Sistema Enzimático do Citocromo P-450 , Oxigenases de Função Mista , Parabenos , Sistema Enzimático do Citocromo P-450/metabolismo , Catálise
13.
Arch Biochem Biophys ; 754: 109950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430969

RESUMO

The cytochrome P450 family of heme metalloenzymes (CYPs) catalyse important biological monooxygenation reactions. Mycobacterium marinum contains a gene encoding a CYP105Q4 enzyme of unknown function. Other members of the CYP105 CYP family have key roles in bacterial metabolism including the synthesis of secondary metabolites. We produced and purified the cytochrome P450 enzyme CYP105Q4 to enable its characterization. Several nitrogen-donor atom-containing ligands were found to bind to CYP105Q4 generating type II changes in the UV-vis absorbance spectrum. Based on the UV-vis absorbance spectra none of the potential substrate ligands we tested with CYP105Q4 were able to displace the sixth distal aqua ligand from the heme, though there was evidence for binding of oleic acid and amphotericin B. The crystal structure of CYP105Q4 in the substrate-free form was determined in an open conformation. A computational structural similarity search (Dali) was used to find the most closely related characterized relatives within the CYP105 family. The structure of CYP105Q4 enzyme was compared to the GfsF CYP enzyme from Streptomyces graminofaciens which is involved in the biosynthesis of a macrolide polyketide. This structural comparison to GfsF revealed conformational changes in the helices and loops near the entrance to the substrate access channel. A disordered B/C loop region, usually involved in substrate recognition, was also observed.


Assuntos
Mycobacterium marinum , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Estrutura Secundária de Proteína , Macrolídeos/química , Macrolídeos/metabolismo , Heme/química , Cristalografia por Raios X
14.
Arch Biochem Biophys ; 752: 109852, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38072297

RESUMO

Rhodococcus globerulus (R. globerulus) was isolated from the soil beneath a Eucalypt tree. Metabolic growth studies revealed that R. globerulus was capable of living on certain monoterpenes, including 1,8-cineole and p-cymene, as sole sources of carbon and energy. Multiple P450 genes were identified in the R. globerulus genome that shared homology to known bacterial, monoterpene hydroxylating P450s. To date, two of these P450s have been expressed and characterised as 1,8-cineole (CYP176A1) and p-cymene (CYP108N12) monooxygenases that are believed to initiate the biodegradation of these terpenes. In this work, another putative P450 gene (CYP108N14) was identified in R. globerulus genome. Given its amino acid sequence identity to other monoterpene hydroxylating P450s it was hypothesised to catalyse monoterpene hydroxylation. These include CYP108A1 from Pseudomonas sp. (47 % identity, 68 % similarity) which hydroxylates α-terpineol, and CYP108N12 also from R. globerulus (62 % identity, 77 % similarity). Also present in the operon containing CYP108N14 were putative ferredoxin and ferredoxin reductase genes, suggesting a typical Class I P450 system. CYP108N14 was successfully over-expressed heterologously and purified, resulting in a good yield of CYP108N14 holoprotein. However, neither the ferredoxin nor ferredoxin reductase could be produced heterologously. Binding studies with CYP108N14 revealed a preference for the monoterpenes p-cymene, (R)-limonene, (S)-limonene, (S)-α-terpineol and (S)-4-terpineol. An active catalytic system was reconstituted with the non-native redox partners cymredoxin (from the CYP108N12 system) and putidaredoxin reductase (from the CYP101A1 system). CYP108N14 when supported by these redox partners was able to catalyse the hydroxylation of the five aforementioned substrates selectively at the methyl benzylic/allylic positions.


Assuntos
Monoterpenos Cicloexânicos , Cimenos , Sistema Enzimático do Citocromo P-450 , Monoterpenos , Rhodococcus , Monoterpenos/metabolismo , Eucaliptol , Sistema Enzimático do Citocromo P-450/metabolismo , Ferredoxinas , Limoneno
15.
Cell ; 139(4): 652-4, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19914158

RESUMO

The loading of replicative helicases onto DNA is tightly regulated in all organisms, yet the molecular mechanisms for this event remain poorly defined. Remus et al. (2009) provide important insights into helicase loading in eukaryotes, showing that the Mcm2-7 replicative helicase encircles double-stranded DNA as head-to-head double hexamers.


Assuntos
Replicação do DNA , DNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
J Appl Microbiol ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38244225

RESUMO

AIM: Hospital-acquired infections (HAIs) caused by antimicrobial-resistant ESKAPE pathogens are a significant concern for the healthcare industry, with an estimated cost of up to ${\$}$45 billion per year in the US alone. Clostridioides difficile is an additional opportunistic pathogen that also poses a serious threat to immunocompromised patients in hospitals. Infections caused by these pathogens lead to increased hospital stays and repeated readmission, resulting in a significant economic burden. Disinfectants and sporicidals are essential to reduce the risk of these pathogens in hospitals, but commercially available products can have a number of disadvantages including inefficacy, long contact times, short shelf lives, and operator health hazards. In this study we evaluated the effectiveness of Rosin (a natural substance secreted by coniferous trees as a defence mechanism against wounds in tree bark) and its commercial derivative Rosetax-21 as disinfectants and sporicidal against the six ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and spore preparations from Clostridioides difficile. METHODS AND RESULTS: Both Rosin and Rosetax-21 were tested under simulated clean and dirty conditions (with BSA) against the ESKAPE pathogens, and C. difficile spore preparations. In clean conditions, Rosin (5% weight/volume: w/v) demonstrated significant efficacy against five of the ESKAPE pathogens, with A. baumannii and E. faecium being the most susceptible, and K. pneumoniae the most resistant, showing only a one-log reduction after a 5 min treatment. However, in dirty conditions, all pathogens including K. pneumoniae exhibited at least a 3-log reduction to Rosin within 5 min. Rosetax-21 (5% w/v) was found to be less effective than Rosin in clean conditions, a trend that was exacerbated in the presence of BSA. Additionally, both Rosin and Rosetax-21 at 2.5% (w/v) achieved complete eradication of C. difficile spores when combined with 0.5% glutaraldehyde, though their standalone sporicidal activity was limited. CONCLUSIONS: The findings from this study highlight the potential of Rosin and Rosetax-21 as both bactericidal and sporicidal disinfectants, with their efficacy varying based on the conditions and the pathogens tested. This presents an avenue for the development of novel healthcare disinfection strategies, especially against HAIs caused by antimicrobial-resistant ESKAPE pathogens and C. difficile.

17.
Mol Cell ; 61(2): 287-96, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26725007

RESUMO

Cellular DNA replication origins direct the recruitment of replicative helicases via the action of initiator proteins belonging to the AAA+ superfamily of ATPases. Archaea have a simplified subset of the eukaryotic DNA replication machinery proteins and possess initiators that appear ancestral to both eukaryotic Orc1 and Cdc6. We have reconstituted origin-dependent recruitment of the homohexameric archaeal MCM in vitro with purified recombinant proteins. Using this system, we reveal that archaeal Orc1-1 fulfills both Orc1 and Cdc6 functions by binding to a replication origin and directly recruiting MCM helicase. We identify the interaction interface between these proteins and reveal how ATP binding by Orc1-1 modulates recruitment of MCM. Additionally, we provide evidence that an open-ring form of the archaeal MCM homohexamer is loaded at origins.


Assuntos
Proteínas Arqueais/metabolismo , DNA Helicases/metabolismo , Origem de Replicação , Sulfolobus/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , DNA Helicases/química , Dados de Sequência Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína
18.
Reprod Health ; 21(1): 93, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943120

RESUMO

BACKGROUND: Access to an on-demand pericoital oral contraceptive pill - used to prevent pregnancy within a defined window around sexual intercourse - could offer women more reproductive agency. A contraceptive with this indication is not currently available in any market. This review aims to understand international user appeal for an on-demand pericoital oral contraceptive pill. METHODS: Systematic scoping review, comprising 30 peer-reviewed papers published between 2014-2023. RESULTS: Data from 30 papers reporting on research from 16 countries across five World Health Organisation regions suggests widespread user appeal for on-demand oral contraceptive pills that can be used peri- or post-coitally, especially among women who are younger, more educated or who have less frequent sex. Women of varying age, wealth, employment or relationship status, and with different prior experience of using modern contraceptives, were also interested. Women identified clear rationale for use and preference of these types of product: close alignment with women's sexual lives that comprised unplanned, spontaneous or occasional sex; perceived convenience and effectiveness; discreet use of pills to negotiate contextual circumstances that constrained their reproductive agency. Factors inhibiting use included knowledge barriers and attitudes of service providers, a lack of knowledge and misinformation among end-users, women's dislike of menstrual side effects and myths related to the effects of hormone content on future fertility. CONCLUSIONS: Introduction of an on-demand pericoital oral contraceptive pill could expand contraceptive choice for diverse women experiencing unmet need for modern contraception and constrained sexual and reproductive agency. Priorities for future research include: broadening the geographical scope of evidence to include SE Asia and the Pacific, and international rural and peri-urban settings; documenting the perspectives of adolescents and unmarried young people; identifying opportunities for innovation in the supply channels to enhance appropriate, affordable access to on-demand oral contraceptives; and unpacking how to bring new pericoital contraceptives to the market in a variety of international settings.


Access to an oral contraceptive pill that is used as needed to prevent pregnancy and taken within a defined window around sexual intercourse (i.e. an on-demand pericoital oral contraceptive pill) could offer women more reproductive agency. Though not currently available in any market, our analysis from this review of international literature reveals widespread appeal among women for using this type of contraceptive product. Clear rationale supporting use and preference included: (1) closer alignment with women's sexual lives that comprised desired but unplanned, spontaneous or occasional sex than other contraceptives; (2) perceived convenience and effectiveness, offering benefits over other modern contraceptives; and (3) women feeling able to overcome social values and beliefs that constrained their reproductive agency. There were also barriers to use of this type of product, including knowledge gaps and attitudes of service providers, a lack of knowledge and misinformation among end-users, women's dislike of the side effects, and myths and misconceptions about the impact of the hormone content in pills on future fertility. Introduction of an on-demand pericoital oral contraceptive pill could expand contraceptive choice for diverse women experiencing unmet need for modern contraception and constrained sexual and reproductive agency. Priorities for future research include: broadening the geographical scope of evidence to include SE Asia and the Pacific, and rural and peri-urban settings; documenting the perspectives of adolescents and unmarried young people; identifying opportunities for innovation in the supply channels to enhance appropriate, affordable access to this type of contraceptive; and unpacking how to bring this new contraceptive to the market in a variety of international settings.


Assuntos
Anticoncepcionais Orais , Humanos , Feminino , Anticoncepcionais Orais/administração & dosagem , Comportamento Contraceptivo/estatística & dados numéricos , Coito , Conhecimentos, Atitudes e Prática em Saúde , Gravidez , Comportamento Sexual , Aceitação pelo Paciente de Cuidados de Saúde , Anticoncepção/métodos
19.
Ecotoxicol Environ Saf ; 273: 116167, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447519

RESUMO

Mycotoxins are known environmental pollutants that may contaminate food and feed chains. Some mycotoxins are regulated in many countries to limit the trading of contaminated and harmful commodities. However, the so-called emerging mycotoxins are poorly understood and need to be investigated further. Fusaric acid is an emerging mycotoxin, noxious to plants and animals, but is known to be less toxic to plants when hydroxylated. The detoxification routes effective in animals have not been elucidated yet. In this context, this study integrated in silico and in vitro techniques to discover potential bioremediation routes to turn fusaric acid to its less toxic metabolites. The toxicodynamics of these forms in humans have also been addressed. An in silico screening process, followed by molecular docking and dynamics studies, identified CYP199A4 from the bacterium Rhodopseudomonas palustris HaA2 as a potential fusaric acid biotransforming enzyme. Its activity was confirmed in vitro. However, the effect of hydroxylation seemed to have a limited impact on the modelled toxicodynamics against human targets. This study represents a starting point to develop a hybrid in silico/in vitro pipeline to find bioremediation agents for other food, feed and environmental contaminants.


Assuntos
Ácido Fusárico , Micotoxinas , Animais , Humanos , Ácido Fusárico/toxicidade , Simulação de Acoplamento Molecular , Micotoxinas/toxicidade , Ração Animal/análise , Sistema Enzimático do Citocromo P-450
20.
J Am Chem Soc ; 145(16): 9207-9222, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042073

RESUMO

The cytochrome P450 (CYP) superfamily of heme monooxygenases has demonstrated ability to facilitate hydroxylation, desaturation, sulfoxidation, epoxidation, heteroatom dealkylation, and carbon-carbon bond formation and cleavage (lyase) reactions. Seeking to study the carbon-carbon cleavage reaction of α-hydroxy ketones in mechanistic detail using a microbial P450, we synthesized α-hydroxy ketone probes based on the physiological substrate for a well-characterized benzoic acid metabolizing P450, CYP199A4. After observing low activity with wild-type CYP199A4, subsequent assays with an F182L mutant demonstrated enzyme-dependent C-C bond cleavage toward one of the α-hydroxy ketones. This C-C cleavage reaction was subject to an inverse kinetic solvent isotope effect analogous to that observed in the lyase activity of the human P450 CYP17A1, suggesting the involvement of a species earlier than Compound I in the catalytic cycle. Co-crystallization of F182L-CYP199A4 with this α-hydroxy ketone showed that the substrate bound in the active site with a preference for the (S)-enantiomer in a position which could mimic the topology of the lyase reaction in CYP17A1. Molecular dynamics simulations with an oxy-ferrous model of CYP199A4 revealed a displacement of the substrate to allow for oxygen binding and the formation of the lyase transition state proposed for CYP17A1. This demonstration that a correctly positioned α-hydroxy ketone substrate can realize lyase activity with an unusual inverse solvent isotope effect in an engineered microbial system opens the door for further detailed biophysical and structural characterization of CYP catalytic intermediates.


Assuntos
Liases , Humanos , Domínio Catalítico , Catálise , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA