RESUMO
To further test the hypothesis that electron capture dissociation (ECD) involves long-lived radical intermediates and radical migration occurs within these intermediates before fragmentation, radical trap moieties were attached to peptides with the assumption that they would reduce fragmentation by decreasing the mobility of the radical. Coumarin labels were chosen for the radical traps, and unlabeled, singly-labeled, and doubly-labeled Substance P were analyzed by ECD. The results demonstrated a correlation between the number and position of tags on the peptide and the intensity of side-chain cleavages observed, as well as an inverse correlation between the number of tags on the peptide and the intensity of backbone cleavages. Addition of radical traps to the peptide inhibits backbone cleavages, suggesting that either radical mobility is required for these cleavages, or new noncovalent interactions prevent separation of backbone cleavage fragments. The enhancement of side-chain cleavages and the observation of new side-chain cleavages associated with aromatic groups suggest that the gas-phase conformation of this peptide is substantially distorted from untagged Substance P and involves previously unobserved interactions between the coumarin tags and the phenylalanine residues. Furthermore, the use of a double resonance (DR)-ECD experiment showed that these side-chain losses are all products of long-lived radical intermediate species, which suggests that steric hindrance prevents the coumarin-localized radical from interacting with the backbone while simultaneously increasing the radical rearrangements with the side chains.
Assuntos
Substância P/análise , Cromatografia Líquida de Alta Pressão , Cumarínicos/química , Eletroquímica , Radicais Livres , Indicadores e Reagentes , Lisina/química , Fragmentos de Peptídeos/análiseRESUMO
To explore the mechanism of electron capture dissociation (ECD) of linear peptides, a set of 16-mer peptides were synthesized with deuterium labeled on the alpha-carbon position of four glycines. The ECD spectra of these peptides showed that such peptides exhibit a preference for the radical to migrate to the alpha-carbon position on glycine via hydrogen (or deuterium) abstraction before the final cleavage and generation of the detected product ions. The data show c-type fragment ions, ions corresponding to the radical cation of the c-type fragments, c*, and they also show c*-1 peaks in the deuterated peptides only. The presence of the c*-1 peaks is best explained by radical-mediated scrambling of the deuterium atoms in the long-lived, metastable, radical intermediate complex formed by initial electron capture, followed by dissociation of the complex. These data suggest the presence of at least two mechanisms, one slow, one fast. The abundance of H* and -CO losses from the precursor ion changed upon deuterium labeling indicating the presence of a kinetic isotope effect, which suggests that the values reported here represent an underestimation of radical migration and H/D scrambling in the observed fragments.