Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838819

RESUMO

Due to their robust antioxidant capabilities, potential health benefits, wide variety of biological activities, and strong antioxidant qualities, phenolic compounds are substances that have drawn considerable attention in recent years. The main goal of the review is to draw attention to saharian Algerian medicinal plants and the determination of their bioactivity (antioxidant, anti-cancer, and anti-inflammatory importance), and to present their chemical composition as well as in vivo and in vitro studies, clinical studies, and other studies confirming their real impact on human health. Research results have revealed a rich variety of medicinal plants used to treat various disease states in this region. Based on in vivo and in vitro studies, biological activity, and clinical studies, a list of 34 species of desert plants, belonging to 20 botanical families, useful both in preventive actions and in the treatment of neoplastic diseases has been established, and polyphenolic compounds have been identified as key to the health potential of endemic diseases and desert plants. It has been shown that people who follow a diet rich in polyphenols are less prone to the risk of many cancers and chronic diseases, such as obesity and diabetes. In view of the increasing antioxidant potential of these plant species, as well as the increasing trade in herbal products from the Sahara region, phytosanitary and pharmaceutical regulations must change in this respect and should be in line with Trade Related Aspects of Intellectual Property Rights (TRIPS), and the sustainable use and development of plant products must be addressed at the same time.


Assuntos
Etnobotânica , Plantas Medicinais , Humanos , Etnofarmacologia , Fitoterapia , Argélia , Antioxidantes , Plantas Medicinais/química , Compostos Fitoquímicos/química , Extratos Vegetais/química
2.
Ann Med Surg (Lond) ; 86(1): 284-291, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222677

RESUMO

Osteoporosis, characterized by low bone density and increased risk of fractures, represents a major healthcare challenge. Anti-resorptive and anabolic medications are now used to treat osteoporosis in an effort to reduce bone loss and increase bone mass. Innovative methods are required since current therapies have drawbacks. Promising options for improving bone health and medicine delivery are provided by nanotechnology. Bisphosphonates with tetracyclines and oligopeptides, among other compounds that target the bone, make it easier to provide a particular medication to bone tissue. Additionally, nanocarriers are essential for the administration of both organic and inorganic nanoparticles in the treatment of osteoporosis. Drug encapsulation and controlled release may be done in a variety of ways using organic nanoparticles. Inorganic nanoparticles have special qualities that help in medication transport and bone repair. This review explores the potential of nanoparticle-based strategies in the treatment of osteoporosis.

3.
Front Chem ; 12: 1353524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38961857

RESUMO

Chitosan, a biopolymer obtained from chitin, is known for its remarkable adsorption abilities for dyes, drugs, and fats, and its diverse array of antibacterial characteristics. This study explores the extraction and characterization of chitosan from the mycelium of Amanita phalloides. The moisture content, ash content, water binding capacity, fat binding capacity, and degree of deacetylation of the extracted chitosan were determined. The chitosan exhibited a high yield of 70%, crystallinity of 49.07%, a degree of deacetylation of 86%, and potent antimicrobial properties against both Gram-negative and Gram-positive bacteria. The study also examined the adsorption capabilities of chitosan to remove methylene blue (MB) dye by analysing specific factors like pH, reaction time, and MB concentration using the response surface model. The highest degree of MB dye removal was 91.6% at a pH of 6, a reaction time of around 60 min and an initial dye concentration of 16 ppm. This experimental design can be applied for chitosan adsorption of other organic compounds such as dyes, proteins, drugs, and fats.

4.
Ann Med Surg (Lond) ; 86(8): 4541-4554, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39118776

RESUMO

The article provides an insightful overview of the pivotal role of nanotechnology in revolutionizing cancer diagnosis and treatment. It discusses the critical importance of nanoparticles in enhancing the accuracy of cancer detection through improved imaging contrast agents and the synthesis of various nanomaterials designed for oncology applications. The review broadly classifies nanoparticles used in therapeutics, including metallic, magnetic, polymeric, and many other types, with an emphasis on their functions in drug delivery systems for targeted cancer therapy. It details targeting mechanisms, including passive and intentional targeting, to maximize treatment efficacy while minimizing side effects. Furthermore, the article addresses the clinical applications of nanomaterials in cancer treatment, highlights prospects, and addresses the challenges of integrating nanotechnology into cancer treatment.

5.
Front Chem ; 12: 1367552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449480

RESUMO

Ephedra alata leaf extracts have therapeutic properties and contain various natural compounds known as phytochemicals. This study assessed the phytochemical content and antioxidant effects of a Ephedra alata leaf extract, as well as zinc oxide (ZnO) nanoparticle production. The extract contained phenolic acids, including vanillic acid, chlorogenic acid, gallic acid, p-coumaric acid, vanillin and rutin. Its total phenolic content and total flavonoid content were 48.7 ± 0.9 mg.g-1 and 1.7 ± 0.4 mg.g-1, respectively. The extract displayed a DPPH inhibition rate of 70.5%, total antioxidant activity of 49.5 ± 3.4 mg.g-1, and significant antimicrobial activity toward Gram-positive and negative bacteria. The synthesized ZnO nanoparticles had spherical shape, crystallite size of 25 nm, particle size between 5 and 30 nm, and bandgap energy of 3.3 eV. In specific conditions (90 min contact time, pH 7, and 25°C), these nanoparticles efficiently photodegraded 87% of methylene blue, suggesting potential applications for sustainable water treatment and pollution control.

6.
Environ Sci Pollut Res Int ; 31(12): 18379-18395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358626

RESUMO

The rapid rise of artificial intelligence (AI) technology has revolutionized numerous fields, with its applications spanning finance, engineering, healthcare, and more. In recent years, AI's potential in addressing environmental concerns has garnered significant attention. This review paper provides a comprehensive exploration of the impact that AI has on addressing and mitigating critical environmental concerns. In the backdrop of AI's remarkable advancement across diverse disciplines, this study is dedicated to uncovering its transformative potential in the realm of environmental monitoring. The paper initiates by tracing the evolutionary trajectory of AI technologies and delving into the underlying design principles that have catalysed its rapid progression. Subsequently, it delves deeply into the nuanced realm of AI applications in the analysis of remote sensing imagery. This includes an intricate breakdown of challenges and solutions in per-pixel analysis, object detection, shape interpretation, texture evaluation, and semantic understanding. The crux of the review revolves around AI's pivotal role in environmental control, examining its specific implementations in wastewater treatment and solid waste management. Moreover, the study accentuates the significance of AI-driven early-warning systems, empowering proactive responses to environmental threats. Through a meticulous analysis, the review underscores AI's unparalleled capacity to enhance accuracy, adaptability, and real-time decision-making, effectively positioning it as a cornerstone in shaping a sustainable and resilient future for environmental monitoring and preservation.


Assuntos
Inteligência Artificial , Resiliência Psicológica , Catálise , Engenharia , Monitoramento Ambiental
7.
Materials (Basel) ; 16(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37512323

RESUMO

Insects are a readily available source of chitosan due to their high reproductive rates, ease of breeding, and resistance to changes in their ecosystem. This study aimed to extract chitosan from several widespread insects: Blaps lethifera (CS-BL), Pimelia fernandezlopezi (CS-PF), and Musca domestica (CS-MD). The study was also extended to using the obtained chitosans in removing methylene blue dye (MB) from wastewater. The source of the chitosan, the initial concentration of MB dye, and the reaction time were chosen as the working parameters. The experiments were designed using a central composite design (CCD) based on the dye removal efficiency as the response variable. The experimental work and statistical calculation of the CCD showed that the dye removal efficiency ranged from 35.9% to 88.7% for CS-BL, from 18.8% to 47.1% for CS-PF, and from 10.3% to 29.0% for CS-MD at an initial MB concentration of 12.79 mg/L. The highest methylene blue dye removal efficiency was 88.7% for CS-BL at a reaction time of 120 min. This indicates that the extraction of chitosan from insects (Blaps lethifera) and its application in dye removal is a promising, environmentally friendly, economical, biodegradable, and cost-effective process. Furthermore, the CCD is a statistical experimental design technique that can be used to optimize process variables for removing other organic pollutants using chitosan.

8.
Ann Med Surg (Lond) ; 85(12): 6029-6040, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38098602

RESUMO

One of the most difficult tasks among the numerous medication delivery methods is ocular drug delivery. Despite having effective medications for treating ocular illness, we have not yet managed to develop an appropriate drug delivery strategy with the fewest side effects. Nanotechnology has the potential to significantly address the drawbacks of current ocular delivery systems, such as their insufficient therapeutic effectiveness and unfavourable side effects from invasive surgery or systemic exposure. The objective of the current research is to highlight and update the most recent developments in nano-based technologies for the detection and treatment of ocular diseases. Even if more work has to be done, the advancements shown here might lead to brand-new, very practical ocular nanomedicines.

9.
Nanomaterials (Basel) ; 13(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686933

RESUMO

The green approach-based nanoparticle synthesis is considered a more cost-effective and ecologically responsible method of producing nanoparticles than other standard techniques. A major accomplishment in resolving these issues is the use of nanoparticles for environmental pollution remediation. This article describes a simple method for producing MgO and ZnO nanoparticles (NPs) using aqueous extracts of Zingiber officinale and Glycyrrhiza roots as the stabilizing and reducing agents, respectively. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersed X-ray (EDX) spectroscopy methods were used to characterize the biologically synthesized metal oxide nanoparticles (MO NPs). The XRD results showed that the mean crystallite sizes of synthesized ZnO and MgO NPs, which have excellent purity, are 12.35 nm and 4.83 nm, respectively. The spherical or elliptical shape of the synthesized NPs was confirmed by the SEM analysis. The antibacterial activity of the synthesized NPs against both Gram-negative and Gram-positive bacteria was thoroughly investigated. With a medium zone of inhibition of 7 to 10 mm, the as-synthesized MgO NPs and ZnO NPs demonstrated moderate antibacterial activity towards various bacterial strains.

10.
Front Chem ; 11: 1342988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38298761

RESUMO

This study presents a novel method for synthesizing 1,4-disubstituted 1,2,3-triazole derivatives through a one-pot, multi-component addition reaction using flower-like Cu2O microbeads as a catalyst. The flower-like Cu2O microbeads were synthesized using an aqueous extract of Artimisia Campestris L. This extract demonstrated the capability to reduce and stabilize Cu2O particles during their initial formation, resulting in the formation of a porous flower-like morphology. These Cu2O microbeads exhibit distinctive features, including a cubic close-packed (ccp) crystal structure with an average crystallite size of 22.8 nm, bandgap energy of 2.7 eV and a particle size of 6 µm. Their catalytic activity in synthesizing 1,4-disubstituted 1,2,3-triazole derivatives was investigated through systematic exploration of key parameters such as catalyst quantity (1, 5, 10, 15, 20, and 30 mg/mL), solvent type (dimethylformamide/H2O, ethanol/H2O, dichloromethane/H2O, chloroform, acetone, and dimethyl sulfoxide), and catalyst reusability (four cycles). The Cu2O microbeads significantly increased the product yield from 20% to 85.3%. The green synthesis and outstanding catalytic attributes make these flower-like Cu2O microbeads promising, efficient, and recyclable catalysts for sustainable and effective chemical transformations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA