Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Cell ; 76(3): 485-499.e8, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31495563

RESUMO

Transcriptional responses to external stimuli remain poorly understood. Using global nuclear run-on followed by sequencing (GRO-seq) and precision nuclear run-on sequencing (PRO-seq), we show that CDK8 kinase activity promotes RNA polymerase II pause release in response to interferon-γ (IFN-γ), a universal cytokine involved in immunity and tumor surveillance. The Mediator kinase module contains CDK8 or CDK19, which are presumed to be functionally redundant. We implemented cortistatin A, chemical genetics, transcriptomics, and other methods to decouple their function while assessing enzymatic versus structural roles. Unexpectedly, CDK8 and CDK19 regulated different gene sets via distinct mechanisms. CDK8-dependent regulation required its kinase activity, whereas CDK19 governed IFN-γ responses through its scaffolding function (i.e., it was kinase independent). Accordingly, CDK8, not CDK19, phosphorylates the STAT1 transcription factor (TF) during IFN-γ stimulation, and CDK8 kinase inhibition blocked activation of JAK-STAT pathway TFs. Cytokines such as IFN-γ rapidly mobilize TFs to "reprogram" cellular transcription; our results implicate CDK8 and CDK19 as essential for this transcriptional reprogramming.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fibroblastos/efeitos dos fármacos , Interferon gama/farmacologia , Transcrição Gênica/efeitos dos fármacos , Animais , Quinase 8 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Fibroblastos/enzimologia , Fibroblastos/virologia , Células HCT116 , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , RNA Polimerase II/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Vesiculovirus/patogenicidade
2.
J Immunol ; 199(11): 3821-3827, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29070671

RESUMO

Several complement proteins exacerbate prion disease, including C3, C1q, and CD21/35. These proteins of the complement cascade likely increase uptake, trafficking, and retention of prions in the lymphoreticular system, hallmark sites of early prion propagation. Complement regulatory protein factor H (fH) binds modified host proteins and lipids to prevent C3b deposition and, thus, autoimmune cell lysis. Previous reports show that fH binds various conformations of the cellular prion protein, leading us to question the role of fH in prion disease. In this article, we report that transgenic mice lacking Cfh alleles exhibit delayed peripheral prion accumulation, replication, and pathogenesis and onset of terminal disease in a gene-dose manner. We also report a biophysical interaction between purified fH and prion rods enriched from prion-diseased brain. fH also influences prion deposition in brains of infected mice. We conclude from these data and previous findings that the interplay between complement and prions likely involves a complex balance of prion sequestration and destruction via local tissue macrophages, prion trafficking by B and dendritic cells within the lymphoreticular system, intranodal prion replication by B and follicular dendritic cells, and potential prion strain selection by CD21/35 and fH. These findings reveal a novel role for complement-regulatory proteins in prion disease.


Assuntos
Linfócitos B/imunologia , Encéfalo/metabolismo , Fator H do Complemento/metabolismo , Células Dendríticas/imunologia , Macrófagos/imunologia , Doenças Priônicas/imunologia , Príons/imunologia , Animais , Encéfalo/patologia , Células Cultivadas , Fator H do Complemento/genética , Inativadores do Complemento , Via Alternativa do Complemento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Priônicas/genética , Ligação Proteica
3.
Int Immunol ; 25(12): 697-702, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038599

RESUMO

Accumulating evidence shows a critical role of the complement system in facilitating attachment of prions to both B cells and follicular dendritic cells and assisting in prion replication. Complement activation intensifies disease in prion-infected animals, and elimination of complement components inhibits prion accumulation, replication and pathogenesis. Chronic wasting disease (CWD) is a highly infectious prion disease of captive and free-ranging cervid populations that utilizes the complement system for efficient peripheral prion replication and most likely efficient horizontal transmission. Here we show that complete genetic or transient pharmacological depletion of C3 prolongs incubation times and significantly delays splenic accumulation in a CWD transgenic mouse model. Using a semi-quantitative prion amplification scoring system we show that C3 impacts disease progression in the early stages of disease by slowing the rate of prion accumulation and/or replication. The delayed kinetics in prion replication correlate with delayed disease kinetics in mice deficient in C3. Taken together, these data support a critical role of C3 in peripheral CWD prion pathogenesis.


Assuntos
Complemento C3/imunologia , Doença de Emaciação Crônica/imunologia , Animais , Complemento C3/genética , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Camundongos Knockout , Príons/metabolismo , Baço/imunologia , Baço/metabolismo , Baço/patologia , Doença de Emaciação Crônica/genética , Doença de Emaciação Crônica/mortalidade
4.
J Immunol ; 189(9): 4520-7, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23002439

RESUMO

The complement system has been shown to facilitate peripheral prion pathogenesis. Mice lacking complement receptors CD21/35 partially resist terminal prion disease when infected i.p. with mouse-adapted scrapie prions. Chronic wasting disease (CWD) is an emerging prion disease of captive and free-ranging cervid populations that, similar to scrapie, has been shown to involve the immune system, which probably contributes to their relatively facile horizontal and environmental transmission. In this study, we show that mice overexpressing the cervid prion protein and susceptible to CWD (Tg(cerPrP)5037 mice) but lack CD21/35 expression completely resist clinical CWD upon peripheral infection. CD21/35-deficient Tg5037 mice exhibit greatly impaired splenic prion accumulation and replication throughout disease, similar to CD21/35-deficient murine prion protein mice infected with mouse scrapie. TgA5037;CD21/35(-/-) mice exhibited little or no neuropathology and deposition of misfolded, protease-resistant prion protein associated with CWD. CD21/35 translocate to lipid rafts and mediates a strong germinal center response to prion infection that we propose provides the optimal environment for prion accumulation and replication. We further propose a potential role for CD21/35 in selecting prion quasi-species present in prion strains that may exhibit differential zoonotic potential compared with the parental strains.


Assuntos
Receptores de Complemento 3b/deficiência , Receptores de Complemento 3b/genética , Receptores de Complemento 3d/deficiência , Receptores de Complemento 3d/genética , Receptores de Complemento/deficiência , Receptores de Complemento/genética , Doença de Emaciação Crônica/imunologia , Doença de Emaciação Crônica/prevenção & controle , Animais , Cervos , Modelos Animais de Doenças , Técnicas de Inativação de Genes/métodos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Doenças Priônicas/imunologia , Doenças Priônicas/mortalidade , Doenças Priônicas/prevenção & controle , Doença de Emaciação Crônica/genética
5.
Methods Mol Biol ; 2282: 377-394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928585

RESUMO

Nanoparticles have been used to deliver siRNA to tissues and cells to silence specific genes in diverse organisms. Research and clinical application of nanoparticles like liposomes for drug delivery requires targeting them to specific anatomic regions or cell types, while avoiding off-target effects or clearance by the liver, kidney, or the immune system. Delivery to the central nervous system (CNS) presents additional challenges to cross the blood-brain barrier (BBB) to specific cell types like neurons, astrocytes, or glia. Here, we describe the generation of three different liposomal siRNA delivery vehicles to the CNS using the thin film hydration method. Utilizing cationic or anionic liposomes protects the siRNA from serum nucleases and proteases en route. To deliver the siRNA specifically to the CNS, the liposomes are complexed to a peptide that acts as a neuronal address by binding to nicotinic acetylcholine receptors (nAchRs). When injected intravenously or instilled intranasally, these liposome-siRNA-peptide complexes (LSPCs) or peptide addressed liposome-encapsulated therapeutic siRNA (PALETS) resist serum degradation, effectively cross the BBB, and deliver siRNA to AchR-expressing cells to suppress protein expression in the CNS.


Assuntos
Doenças do Sistema Nervoso Central/terapia , Técnicas de Transferência de Genes , Lipídeos/química , Proteínas/química , Deficiências na Proteostase/terapia , Interferência de RNA , RNA Interferente Pequeno/genética , Terapêutica com RNAi , Animais , Barreira Hematoencefálica/metabolismo , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/metabolismo , Lipossomos , Camundongos Endogâmicos , Dobramento de Proteína , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
6.
Nat Commun ; 12(1): 1375, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654095

RESUMO

Cellular adaptation to hypoxia is a hallmark of cancer, but the relative contribution of hypoxia-inducible factors (HIFs) versus other oxygen sensors to tumorigenesis is unclear. We employ a multi-omics pipeline including measurements of nascent RNA to characterize transcriptional changes upon acute hypoxia. We identify an immediate early transcriptional response that is strongly dependent on HIF1A and the kinase activity of its cofactor CDK8, includes indirect repression of MYC targets, and is highly conserved across cancer types. HIF1A drives this acute response via conserved high-occupancy enhancers. Genetic screen data indicates that, in normoxia, HIF1A displays strong cell-autonomous tumor suppressive effects through a gene module mediating mTOR inhibition. Conversely, in advanced malignancies, expression of a module of HIF1A targets involved in collagen remodeling is associated with poor prognosis across diverse cancer types. In this work, we provide a valuable resource for investigating context-dependent roles of HIF1A and its targets in cancer biology.


Assuntos
Redes Reguladoras de Genes , Genes Supressores de Tumor , Genômica , Hipóxia/genética , Oncogenes , Linhagem Celular Tumoral , Sobrevivência Celular , Quinase 8 Dependente de Ciclina/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/genética , Neoplasias/patologia , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica , Ativação Transcricional/genética , Regulação para Cima/genética
7.
Methods Mol Biol ; 1943: 389-403, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30838631

RESUMO

RNA interference is a relatively new tool used to silence specific genes in diverse biological systems. The development of this promising new technique for research and therapeutic use in studying and treating neurological diseases has been hampered by the lack of an efficient way to deliver siRNA transvascularly across the blood-brain barrier (BBB) to the central nervous system (CNS). Here we describe the generation of three different liposomal siRNA delivery vehicles to the CNS using the thin film hydration method. Utilizing cationic or anionic liposomes protects the siRNA from serum nucleases and proteases en route. To deliver the siRNA specifically to the CNS, the liposomes are complexed to a peptide that acts as a neuronal address by binding to nicotinic acetylcholine receptors (nAchRs). When injected intravenously, these liposome-siRNA-peptide complexes (LSPCs) or peptide addressed liposome encapsulated therapeutic siRNA (PALETS) resist serum degradation, effectively cross the BBB and deliver siRNA to AchR-expressing cells to suppress protein expression in the CNS.


Assuntos
Barreira Hematoencefálica/metabolismo , Técnicas de Transferência de Genes , Lipopeptídeos/farmacocinética , Neurônios/metabolismo , Animais , Cátions/química , Cátions/farmacocinética , Lipopeptídeos/química , Lipossomos , Camundongos , Interferência de RNA , RNA Interferente Pequeno/genética
8.
Transcription ; 10(2): 118-136, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30409083

RESUMO

The fact that many cancer types display transcriptional addiction driven by dysregulation of oncogenic enhancers and transcription factors has led to increased interest in a group of protein kinases, known as transcriptional cyclin dependent kinases (tCDKs), as potential therapeutic targets. Despite early reservations about targeting a process that is essential to healthy cell types, there is now evidence that targeting tCDKs could provide enough therapeutic window to be effective in the clinic. Here, we discuss recent developments in this field, with an emphasis on highly-selective inhibitors and the challenges to be addressed before these inhibitors could be used for therapeutic purposes. Abbreviations: CAK: CDK-activating kinase;CDK: cyclin-dependent kinase;CMGC group: CDK-, MAPK-, GSK3-, and CLK-like;CTD: C-terminal repeat domain of the RPB1 subunit of RNA polymerase II;DRB: 5,6-dichloro-1-ß-D-ribofuranosylbenzimidazole;mCRPC: metastatic castration-resistant prostate cancer;NSCLC: non-small cell lung cancer;P-TEFb: positive elongation factor b;RNAPII: RNA polymerase II;S2: serine-2 of CTD repeats;S5: serine-5 of CTD repeats;S7: serine-7 of CTD repeats;SEC: super elongation complex;tCDK: transcriptional cyclin-dependent kinase;TNBC: triple-negative breast cancer.


Assuntos
Antineoplásicos/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Transcrição Gênica/efeitos dos fármacos , Animais , Antineoplásicos/química , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Inibidores de Proteínas Quinases/química , Transcrição Gênica/genética
9.
PLoS One ; 14(7): e0219995, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31329627

RESUMO

Prion diseases are members of neurodegenerative protein misfolding diseases (NPMDs) that include Alzheimer's, Parkinson's and Huntington diseases, amyotrophic lateral sclerosis, tauopathies, traumatic brain injuries, and chronic traumatic encephalopathies. No known therapeutics extend survival or improve quality of life of humans afflicted with prion disease. We and others developed a new approach to NPMD therapy based on reducing the amount of the normal, host-encoded protein available as substrate for misfolding into pathologic forms, using RNA interference, a catabolic pathway that decreases levels of mRNA encoding a particular protein. We developed a therapeutic delivery system consisting of small interfering RNA (siRNA) complexed to liposomes and addressed to the central nervous system using a targeting peptide derived from rabies virus glycoprotein. These liposome-siRNA-peptide complexes (LSPCs) cross the blood-brain barrier and deliver PrP siRNA to neuronal cells to decrease expression of the normal cellular prion protein, PrPC, which acts as a substrate for prion replication. Here we show that LSPCs can extend survival and improve behavior of prion-infected mice that remain immunotolerant to treatment. LSPC treatment may be a viable therapy for prion and other NPMDs that can improve the quality of life of patients at terminal disease stages.


Assuntos
Lipossomos/metabolismo , Proteínas PrPC/genética , Doenças Priônicas/terapia , Terapêutica com RNAi/métodos , Animais , Antígenos Virais/química , Antígenos Virais/metabolismo , Barreira Hematoencefálica/metabolismo , Feminino , Lipossomos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas PrPC/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
10.
mSphere ; 2(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28144628

RESUMO

Substantial evidence supports the hypothesis that prions are misfolded, infectious, insoluble, and protease-resistant proteins (PrPRES) devoid of instructional nucleic acid that cause transmissible spongiform encephalopathies (TSEs). Protein misfolding cyclic amplification (PMCA) has provided additional evidence that PrPRes acts as a template that can convert the normal cellular prion protein (PrPC) present in uninfected normal brain homogenate (NBH) into the infectious misfolded PrPRES isoform. Human PrPC has been shown to spontaneously convert to a misfolded pathological state causing sporadic Creutzfeldt-Jakob disease (sCJD). Several investigators have reported spontaneous generation of prions by in vitro assays, including PMCA. Here we tested the rate of de novo generation of cervid prions in our laboratory using our standard PMCA protocol and NBH from transgenic mice expressing cervid PrPC (TgCerPrP mice). We generated de novo prions in rounds 4, 5, and 7 at low cumulative rates of 1.6, 5.0, and 6.7%, respectively. The prions caused infectious chronic wasting disease (CWD) upon inoculation into normal uninfected TgCerPrP mice and displayed unique biochemical characteristics compared to other cervid prion strains. We conclude that PMCA of cervid PrPC from normal brain homogenate spontaneously generated a new cervid prion strain. These data support the potential for cervids to develop sporadic CWD. IMPORTANCE CWD is the only known TSE that affects free-ranging wildlife, specifically cervids such as elk, deer, moose, caribou, and reindeer. CWD has become endemic in both free-ranging and captive herds in North America, South Korea, and, most recently, northern Europe. The prion research community continues to debate the origins of CWD. Original foci of CWD emergence in Colorado and Wyoming coincident with the sheep TSE scrapie suggest that scrapie prions may have adapted to cervids to cause CWD. However, emerging evidence supports the idea that cervid PrPC may be more prone to misfolding to the pathological isoform. Here we test the hypothesis that cervid PrPC can spontaneously misfold to create de novo prions. Whether CWD can arise spontaneously as a sporadic TSE or represents a new TSE caused by cervid-adapted scrapie prions profoundly impacts surveillance and mitigation strategies. Podcast: A podcast concerning this article is available.

11.
mSphere ; 2(6)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29202042

RESUMO

Complement receptors 1 and 2 (CR1/2 or CD35/CD21) recognize complement-opsonized antigens to initiate innate and adaptive immunity, respectively. CD35 stimulates phagocytosis on macrophages and antigen presentation on follicular dendritic cells (FDCs). CD21 helps activate B cells as part of the B cell coreceptor with CD19 and CD81. Differential splicing of transcripts from the mouse Cr2 gene generates isoforms with both shared and unique complement binding capacities and cell-type expression. In mouse models, genetic depletion of Cr2 causes either a delay or complete prevention of prion disease, but the relative importance of CD35 versus CD21 in promoting prion disease remains unknown. Here we show that both isoforms act as high-affinity cell surface prion receptors. However, mice lacking CD21 succumbed to terminal prion disease significantly later than mice lacking CD35 or wild-type and hemizygous mice. CD21-deficient mice contained fewer splenic prions than CD35 knockout mice early after infection that contributed to delayed prion neuroinvasion and terminal disease, despite forming follicular networks closer to proximal nerves. While we observed no difference in B cell networks, PrPC expression, or number of follicles, CD21-deficient mice formed more fragmented, less organized follicular networks with fewer Mfge8-positive FDCs and/or tingible body macrophages (TBMφs) than wild-type or CD35-deficient mice. In toto, these data demonstrate a more prominent role for CD21 for proper follicular development and organization leading to more efficient lymphoid prion replication and expedited prion disease than in mice expressing the CD35 isoform. IMPORTANCE Mammalian prion diseases are caused by prions, unique infectious agents composed primarily, if not solely, of a pathologic, misfolded form of a normal host protein, the cellular prion protein (PrPC). Prions replicate without a genetic blueprint, but rather contact PrPC and coerce it to misfold into more prions, which cause neurodegeneration akin to other protein-misfolding diseases like Alzheimer's disease. A single gene produces two alternatively spliced mRNA transcripts that encode mouse complement receptors CD21/35, which promote efficient prion replication in the lymphoid system and eventual movement to the brain. Here we show that CD21/35 are high-affinity prion receptors, but mice expressing only CD21 die from prion disease sooner than CD35-expressing mice, which contain less prions early after infection and exhibit delayed terminal disease, likely due to their less organized splenic follicles. Thus, CD21 appears to be more important for defining splenic architecture that influences prion pathogenesis.

12.
J Vis Exp ; (113)2016 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-27501362

RESUMO

Prion diseases result from the misfolding of the normal, cellular prion protein (PrP(C)) to an abnormal protease resistant isomer called PrP(Res). The emergence of prion diseases in wildlife populations and their increasing threat to human health has led to increased efforts to find a treatment for these diseases. Recent studies have found numerous anti-prion compounds that can either inhibit the infectious PrP(Res) isomer or down regulate the normal cellular prion protein. However, most of these compounds do not cross the blood brain barrier to effectively inhibit PrP(Res) formation in brain tissue, do not specifically target neuronal PrP(C), and are often too toxic to use in animal or human subjects. We investigated whether siRNA delivered intravascularly and targeted towards neuronal PrP(C) is a safer and more effective anti-prion compound. This report outlines a protocol to produce two siRNA liposomal delivery vehicles, and to package and deliver PrP siRNA to neuronal cells. The two liposomal delivery vehicles are 1) complexed-siRNA liposome formulation using cationic liposomes (LSPCs), and 2) encapsulated-siRNA liposome formulation using cationic or anionic liposomes (PALETS). For the LSPCs, negatively charged siRNA is electrostatically bound to the cationic liposome. A positively charged peptide (RVG-9r [rabies virus glycoprotein]) is added to the complex, which specifically targets the liposome-siRNA-peptide complexes (LSPCs) across the blood brain barrier (BBB) to acetylcholine expressing neurons in the central nervous system (CNS). For the PALETS (peptide addressed liposome encapsulated therapeutic siRNA), the cationic and anionic lipids were rehydrated by the PrP siRNA. This procedure results in encapsulation of the siRNA within the cationic or anionic liposomes. Again, the RVG-9r neuropeptide was bound to the liposomes to target the siRNA/liposome complexes to the CNS. Using these formulations, we have successfully delivered PrP siRNA to AchR-expressing neurons, and decreased the PrP(C) expression of neurons in the CNS.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Lipossomos/química , RNA Interferente Pequeno/uso terapêutico , Animais , Barreira Hematoencefálica , Cátions , Humanos , Camundongos , Doenças Priônicas/tratamento farmacológico , Proteínas Priônicas/química
13.
PLoS One ; 8(3): e58630, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23484043

RESUMO

Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200 × g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols.


Assuntos
Bentonita/química , Príons/química , Príons/patogenicidade , Solo/análise , Adsorção , Animais , Bioensaio , Western Blotting , Química Encefálica , Colorado , Imuno-Histoquímica , Dose Letal Mediana , Camundongos , Dióxido de Silício
14.
J Wildl Dis ; 48(2): 425-34, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22493117

RESUMO

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy affecting captive and free-ranging cervids. Currently, tests for CWD in live animals involve relatively invasive procedures to collect lymphoid tissue biopsies and examine them for CWD-associated, protease-resistant cervid prion protein (PrP(CWD)) detected by immunohistochemistry (IHC). We adapted an ultrasensitive prion detection system, protein misfolding cyclic amplification (PMCA), to detect PrP(CWD) in Rocky Mountain elk (Cervus elaphus nelsoni) feces. Our PMCA reproducibly detected a 1.2 × 10(7) dilution of PrP(CWD) (a 10% infected brain homogenate diluted 1.2 × 10(6)-fold into 10% fecal homogenates), equivalent to approximately 100 pg of PrP(CWD)/g of feces. We developed a semiquantitative scoring system based on the first PMCA round at which PrP(CWD) was detected and fit a nonlinear regression curve to our serial dilutions to correlate PMCA scores with known PrP(CWD) concentrations. We used this PMCA scoring system to detect PrP(CWD) and estimate its concentration in feces from free-ranging elk from Rocky Mountain National Park, Colorado. We compared our results to PrP(CWD) IHC of rectoanal mucosa-associated lymphoid tissue and obex from the same animals. The PMCA successfully detected PrP(CWD) in feces from elk that were positive by IHC, with estimated prion loads from 100 to 5,000 pg PrP(CWD)/g of feces. These data show for the first time PrP(CWD) in feces from naturally exposed free-ranging elk and demonstrate the potential of PMCA as a new, noninvasive CWD diagnostic tool to complement IHC.


Assuntos
Cervos , Fezes/química , Proteínas PrPSc/análise , Doença de Emaciação Crônica/diagnóstico , Animais , Animais Selvagens , Feminino , Imuno-Histoquímica/veterinária , Tecido Linfoide/química , Masculino
15.
Sci Rep ; 2: 440, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22679554

RESUMO

While prions probably interact with the innate immune system immediately following infection, little is known about this initial confrontation. Here we investigated incunabular events in lymphotropic and intranodal prion trafficking by following highly enriched, fluorescent prions from infection sites to draining lymph nodes. We detected biphasic lymphotropic transport of prions from the initial entry site upon peripheral prion inoculation. Prions arrived in draining lymph nodes cell autonomously within two hours of intraperitoneal administration. Monocytes and dendritic cells (DCs) required Complement for optimal prion delivery to lymph nodes hours later in a second wave of prion trafficking. B cells constituted the majority of prion-bearing cells in the mediastinal lymph node by six hours, indicating intranodal prion reception from resident DCs or subcapsulary sinus macrophages or directly from follicular conduits. These data reveal novel, cell autonomous prion lymphotropism, and a prominent role for B cells in intranodal prion movement.


Assuntos
Sistema Imunitário/imunologia , Linfonodos/imunologia , Doenças Priônicas/imunologia , Príons/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Complemento C1q/genética , Complemento C1q/imunologia , Complemento C1q/metabolismo , Complemento C3/genética , Complemento C3/imunologia , Complemento C3/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Sistema Imunitário/metabolismo , Linfonodos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Monócitos/imunologia , Monócitos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Príons/genética , Príons/metabolismo , Transporte Proteico , Fatores de Tempo
16.
PLoS One ; 5(6): e11085, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20559428

RESUMO

BACKGROUND: Recent advances toward an effective therapy for prion diseases employ RNA interference to suppress PrP(C) expression and subsequent prion neuropathology, exploiting the phenomenon that disease severity and progression correlate with host PrP(C) expression levels. However, delivery of lentivirus encoding PrP shRNA has demonstrated only modest efficacy in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a new siRNA delivery system incorporating a small peptide that binds siRNA and acetylcholine receptors (AchRs), acting as a molecular messenger for delivery to neurons, and cationic liposomes that protect siRNA-peptide complexes from serum degradation. CONCLUSIONS/SIGNIFICANCE: Liposome-siRNA-peptide complexes (LSPCs) delivered PrP siRNA specifically to AchR-expressing cells, suppressed PrP(C) expression and eliminated PrP(RES) formation in vitro. LSPCs injected intravenously into mice resisted serum degradation and delivered PrP siRNA throughout the brain to AchR and PrP(C)-expressing neurons. These data promote LSPCs as effective vehicles for delivery of PrP and other siRNAs specifically to neurons to treat prion and other neuropathological diseases.


Assuntos
Barreira Hematoencefálica , Lipossomos , Neurônios/metabolismo , Príons/metabolismo , RNA Interferente Pequeno/farmacocinética , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Células Cultivadas , Camundongos , Dados de Sequência Molecular , Príons/química , Príons/genética
17.
Dev Psychopathol ; 19(1): 227-42, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17241492

RESUMO

A history of exposure to harsh physical discipline has been linked to negative outcomes for children, ranging from conduct disorder to depression and low self-esteem. The present study extends this work into adolescence, and examines the relationship of lifetime histories of harsh discipline to adolescents' internalizing and externalizing symptoms and to their developing capacities for establishing autonomy and relatedness in family interactions. Adolescent and parent reports of harsh discipline, independently coded observations of conflictual interactions, and adolescent reports of symptoms were obtained for 141 adolescents at age 16. Both parents' use of harsh discipline was related to greater adolescent depression and externalizing behavior, even when these effects were examined over and above the effects of other parenting measures known to account for these symptoms. Adolescents exposed to harsh discipline from mothers were also less likely to appear warm and engaged during an interaction task with their mothers. It is suggested that a history of harsh discipline is associated not only with social and emotional functioning, but also with the developmental task of autonomy and relatedness.


Assuntos
Transtorno da Conduta/epidemiologia , Poder Familiar , Punição , Autoimagem , Adolescente , Agressão/psicologia , Transtorno da Conduta/diagnóstico , Transtorno da Conduta/psicologia , Depressão/diagnóstico , Depressão/epidemiologia , Depressão/psicologia , Família/psicologia , Feminino , Humanos , Masculino , Autonomia Pessoal , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA