Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35957346

RESUMO

We present a solution for improving the robustness of GNSS positioning with Android devices. The proposed method combines an acquisition phase performed in a dedicated Android app (thus working on the edge) and a processing phase, based on a modified version of the open source library RTKLIB, performed on a dedicated server. The processing phase applies an improved version of the RTK library based on an adaptive algorithm for mitigating the multipath effect on satellite radio signals received by smartphone's antennas. The algorithm is built on top of an extended version of the sigma-epsilon model in which weights associated to observables potentially affected by multipath errors are computed using logged data. In the paper, we will focus our attention on the architecture of the proposed solution and discuss preliminary experimental results obtained with the resulting system.

2.
Sci Rep ; 13(1): 15281, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714945

RESUMO

This research examines the feasibility of using synchronization signals broadcasted by currently deployed fifth generation (5G) cellular networks to determine the position of a static receiver. The main focus lies on the analysis of synchronization among the base stations of a real 5G network in Milan, Italy, as this has a major impact on the accuracy of localization based on time of arrival measurements. Understanding such properties, indeed, is fundamental to characterize the clock drifts and implement compensation strategies as well as to identify the direct communication beam. The paper shows how the clock errors, i.e., inaccurate synchronization, among 5G base stations exhibit a significant bias, which is detrimental for precise cellular positioning. By compensating the synchronization errors of devices' clocks, we demonstrate that it is in principle possible to localize a static user with an accuracy of approximately 8-10 m in non-obstructed visibility conditions, for urban and rural scenarios, using the deployed 5G network operating at 3.68 GHz and relying on broadcast signals as defined by 5G Release 15 standard. This work has been funded by the European Space Agency (ESA) Navigation Innovation and Support Program (NAVISP) Element 2 pillar which aims at improving the competitiveness of the industry of the participating States in the global Positioning, Navigation and Timing (PNT) market.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA