Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS Biol ; 20(12): e3001921, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36548240

RESUMO

Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climate change. Yet no large-scale assessments of threat management strategies exist. Applying a structured participatory approach, we demonstrate that existing conservation efforts are insufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of native terrestrial taxa and land-associated seabirds are likely to decline by 2100 under current trajectories. Emperor penguins are identified as the most vulnerable taxon, followed by other seabirds and dry soil nematodes. We find that implementing 10 key threat management strategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasive threat to Antarctic biodiversity and influencing global policy to effectively limit climate change is the most beneficial conservation strategy. However, minimising impacts of human activities and improved planning and management of new infrastructure projects are cost-effective and will help to minimise regional threats. Simultaneous global and regional efforts are critical to secure Antarctic biodiversity for future generations.


Assuntos
Conservação dos Recursos Naturais , Spheniscidae , Animais , Humanos , Regiões Antárticas , Biodiversidade , Espécies Introduzidas , Mudança Climática , Ecossistema
2.
J Environ Manage ; 351: 119711, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070424

RESUMO

The small ice-free areas of Antarctica are essential locations for both biodiversity and scientific research but are subject to considerable and expanding human impacts, resulting primarily from station-based research and support activities, and local tourism. Awareness by operators of the need to conserve natural values in and around station and visitor site footprints exists, but the cumulative nature of impacts often results in reactive rather than proactive management. With human activity spread across many isolated pockets of ice-free ground, the pathway to the greatest reduction of human impacts within this natural reserve is through better management of these areas, which are impacted the most. Using a case study of Australia's Casey Station, we found significant natural values persist within the immediate proximity (<10 m) of long-term station infrastructure, but encroachment by physical disturbance results in ongoing pressures. Active planning to better conserve such values would provide a direct opportunity to enhance protection of Antarctica's environment. Here we introduce an approach to systematic conservation planning, tailored to Antarctic research stations, to help managers improve the conservation of values surrounding their activity locations. Use of this approach provides a potential mechanism to balance the need for scientific access to the continent with international obligations to protect its environment. It may also facilitate the development of subordinate conservation tools, including management plans and natural capital accounting. By proactively minimising and containing their station footprints, national programs can also independently demonstrate their commitment to protecting Antarctica's environment.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Humanos , Regiões Antárticas , Atividades Humanas , Efeitos Antropogênicos
3.
Glob Chang Biol ; 28(20): 5865-5880, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35795907

RESUMO

Antarctic biodiversity faces an unknown future with a changing climate. Most terrestrial biota is restricted to limited patches of ice-free land in a sea of ice, where they are adapted to the continent's extreme cold and wind and exploit microhabitats of suitable conditions. As temperatures rise, ice-free areas are predicted to expand, more rapidly in some areas than others. There is high uncertainty as to how species' distributions, physiology, abundance, and survivorship will be affected as their habitats transform. Here we use current knowledge to propose hypotheses that ice-free area expansion (i) will increase habitat availability, though the quality of habitat will vary; (ii) will increase structural connectivity, although not necessarily increase opportunities for species establishment; (iii) combined with milder climates will increase likelihood of non-native species establishment, but may also lengthen activity windows for all species; and (iv) will benefit some species and not others, possibly resulting in increased homogeneity of biodiversity. We anticipate considerable spatial, temporal, and taxonomic variation in species responses, and a heightened need for interdisciplinary research to understand the factors associated with ecosystem resilience under future scenarios. Such research will help identify at-risk species or vulnerable localities and is crucial for informing environmental management and policymaking into the future.


Assuntos
Biodiversidade , Ecossistema , Regiões Antárticas , Biota , Mudança Climática , Vento
4.
Glob Chang Biol ; 27(9): 1692-1703, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629799

RESUMO

Globally, collapse of ecosystems-potentially irreversible change to ecosystem structure, composition and function-imperils biodiversity, human health and well-being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km2 , from Australia's coral reefs to terrestrial Antarctica. Pressures from global climate change and regional human impacts, occurring as chronic 'presses' and/or acute 'pulses', drive ecosystem collapse. Ecosystem responses to 5-17 pressures were categorised as four collapse profiles-abrupt, smooth, stepped and fluctuating. The manifestation of widespread ecosystem collapse is a stark warning of the necessity to take action. We present a three-step assessment and management framework (3As Pathway Awareness, Anticipation and Action) to aid strategic and effective mitigation to alleviate further degradation to help secure our future.


Assuntos
Recifes de Corais , Ecossistema , Regiões Antárticas , Biodiversidade , Mudança Climática , Humanos
5.
Glob Chang Biol ; 26(6): 3178-3180, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32227664

RESUMO

This summer, a heatwave across Antarctica saw temperatures soar above average. Temperatures above zero are especially significant because they accelerate ice melt. Casey Station had its highest temperature ever, reaching a maximum of 9.2°C and minimum of 2.5°C. The highest temperature in Antarctica was 20.75°C on 9 February. Here we discuss the biological implications of such extreme events.


Assuntos
Temperatura Alta , Regiões Antárticas , Congelamento , Estações do Ano , Temperatura
6.
J Environ Manage ; 212: 340-348, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29453119

RESUMO

Research stations in Antarctica are concentrated on scarce ice-free habitats. Operating these stations in the harsh Antarctic climate provides many challenges, including the need to handle bulk fuel and cargo increasing the risk of environmental incidents. We examined 195 reports of environmental incidents from the Australian Antarctic Program, spanning six years, to investigate the impacts and pathways of contemporary environmental incidents. Fuel and chemical spills were most common, followed by biosecurity incursions. The majority of reports were assessed as having insignificant actual impacts. Either the incidents were small, or active, rapid response and mitigation procedures minimised impact. During the period only one spill report (4000 l) was assessed as a 'high' impact. This is despite over 13 million litres of diesel utilised. The majority of incidents occurred within the existing station footprints. The pathways leading to the incidents varied, with technical causes predominately leading to spills, and procedural failures leading to biosecurity incursions. The large number of reports with inconsequential impacts suggest an effective environmental management system with a good culture of reporting environmental incidents. Our findings suggest that the key to continual improvement in an ongoing environmental management system is to learn from incidences and take action to prevent them occurring again, with an end-goal of minimising the residual risk as much as possible.


Assuntos
Poluentes Ambientais , Atividades Humanas , Regiões Antárticas , Austrália , Clima , Ecossistema , Substâncias Perigosas
7.
Glob Chang Biol ; 23(7): 2863-2873, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27976462

RESUMO

The two non-native grasses that have established long-term populations in Antarctica (Poa pratensis and Poa annua) were studied from a global multidimensional thermal niche perspective to address the biological invasion risk to Antarctica. These two species exhibit contrasting introduction histories and reproductive strategies and represent two referential case studies of biological invasion processes. We used a multistep process with a range of species distribution modelling techniques (ecological niche factor analysis, multidimensional envelopes, distance/entropy algorithms) together with a suite of thermoclimatic variables, to characterize the potential ranges of these species. Their native bioclimatic thermal envelopes in Eurasia, together with the different naturalized populations across continents, were compared next. The potential niche of P. pratensis was wider at the cold extremes; however, P. annua life history attributes enable it to be a more successful colonizer. We observe that particularly cold summers are a key aspect of the unique Antarctic environment. In consequence, ruderals such as P. annua can quickly expand under such harsh conditions, whereas the more stress-tolerant P. pratensis endures and persist through steady growth. Compiled data on human pressure at the Antarctic Peninsula allowed us to provide site-specific biosecurity risk indicators. We conclude that several areas across the region are vulnerable to invasions from these and other similar species. This can only be visualized in species distribution models (SDMs) when accounting for founder populations that reveal nonanalogous conditions. Results reinforce the need for strict management practices to minimize introductions. Furthermore, our novel set of temperature-based bioclimatic GIS layers for ice-free terrestrial Antarctica provide a mechanism for regional and global species distribution models to be built for other potentially invasive species.


Assuntos
Espécies Introduzidas , Poaceae/crescimento & desenvolvimento , Regiões Antárticas , Ecologia , Previsões , Humanos , Estações do Ano , Temperatura
8.
Plant Physiol ; 168(4): 1636-47, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26091819

RESUMO

Protoxylem plays an important role in the hydraulic function of vascular systems of both herbaceous and woody plants, but relatively little is known about the processes underlying the maintenance of protoxylem function in long-lived tissues. In this study, embolism repair was investigated in relation to xylem structure in two cushion plant species, Azorella macquariensis and Colobanthus muscoides, in which vascular water transport depends on protoxylem. Their protoxylem vessels consisted of a primary wall with helical thickenings that effectively formed a pit channel, with the primary wall being the pit channel membrane. Stem protoxylem was organized such that the pit channel membranes connected vessels with paratracheal parenchyma or other protoxylem vessels and were not exposed directly to air spaces. Embolism was experimentally induced in excised vascular tissue and detached shoots by exposing them briefly to air. When water was resupplied, embolized vessels refilled within tens of seconds (excised tissue) to a few minutes (detached shoots) with water sourced from either adjacent parenchyma or water-filled vessels. Refilling occurred in two phases: (1) water refilled xylem pit channels, simplifying bubble shape to a rod with two menisci; and (2) the bubble contracted as the resorption front advanced, dissolving air along the way. Physical properties of the protoxylem vessels (namely pit channel membrane porosity, hydrophilic walls, vessel dimensions, and helical thickenings) promoted rapid refilling of embolized conduits independent of root pressure. These results have implications for the maintenance of vascular function in both herbaceous and woody species, because protoxylem plays a major role in the hydraulic systems of leaves, elongating stems, and roots.


Assuntos
Apiaceae/fisiologia , Caryophyllaceae/fisiologia , Água/metabolismo , Xilema/fisiologia , Apiaceae/anatomia & histologia , Apiaceae/ultraestrutura , Transporte Biológico/fisiologia , Caryophyllaceae/anatomia & histologia , Caryophyllaceae/ultraestrutura , Parede Celular/fisiologia , Parede Celular/ultraestrutura , Microscopia Crioeletrônica , Hidrodinâmica , Microscopia Confocal , Microscopia Eletrônica de Varredura , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Raízes de Plantas/ultraestrutura , Brotos de Planta/anatomia & histologia , Brotos de Planta/fisiologia , Brotos de Planta/ultraestrutura , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Caules de Planta/ultraestrutura , Especificidade da Espécie , Xilema/anatomia & histologia , Xilema/ultraestrutura
9.
Trends Ecol Evol ; 37(1): 5-9, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34809999

RESUMO

Antarctica's isolation has been breached by various non-native species, including microbes, a grass, and some invertebrates. As yet, no marine species have reportedly established populations. With increasing effects of climate change and human activity, continued concerted action is needed to keep Antarctica protected from the impacts of non-native species establishment.


Assuntos
Biodiversidade , Espécies Introduzidas , Regiões Antárticas , Mudança Climática , Atividades Humanas , Humanos
10.
Ecology ; 92(7): 1436-47, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21870618

RESUMO

Although theory underlying the invasion paradox, or the change in the relationship between the richness of alien and indigenous species from negative to positive with increasing spatial scale, is well developed and much empirical work on the subject has been undertaken, most of the latter has concerned plants and to a lesser extent marine invertebrates. Here we therefore examine the extent to which the relationships between indigenous and alien species richness change from the local metacommunity to the interaction neighborhood scales, and the influences of abundance, species identity, and environmental favorability thereon, in springtails, a significant component of the soil fauna. Using a suite of modeling techniques, including generalized least squares and geographically weighted regressions to account for spatial autocorrelation or nonstationarity of the data, we show that the abundance and species richness of both indigenous and alien species at the metacommunity scale respond strongly to declining environmental favorability, represented here by altitude. Consequently, alien and indigenous diversity covary positively at this scale. By contrast, relationships are more complex at the interaction neighborhood scale, with the relationship among alien species richness and/or density and the density of indigenous species varying between habitats, being negative in some, but positive in others. Additional analyses demonstrated a strong influence of species identity, with negative relationships identified at the interaction neighborhood scale involving alien hypogastrurid springtails, a group known from elsewhere to have negative effects on indigenous species in areas where they have been introduced. By contrast, diversity relationships were positive with the other alien species. These results are consistent with both theory and previous empirical findings for other taxa, that interactions among indigenous and alien species change substantially with spatial scale and that environmental favorability may play a key role in explaining the larger scale patterns. However, they also suggest that the interactions may be affected by the identity of the species concerned, especially at the interaction neighborhood scale.


Assuntos
Biodiversidade , Insetos/classificação , Espécies Introduzidas , Animais , Insetos/fisiologia , Modelos Biológicos , Ilhas do Pacífico , Especificidade da Espécie
11.
Funct Plant Biol ; 42(6): 552-564, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32480700

RESUMO

Understanding the response of sub-Antarctic plants to a warming climate requires an understanding of the relationship of carbon gain and loss to temperature. In a field study on Heard Island, we investigated the responses of photosynthesis and respiration of the sub-Antarctic megaherb Pringlea antiscorbutica R. Br. to temperature. This was done by instantaneously manipulating leaf temperature in a gas exchange cuvette on plants adapted to natural temperature variation along an altitudinal gradient. There was little altitudinal variation in the temperature response of photosynthesis. Photosynthesis was much less responsive to temperature than electron transport, suggesting that Rubisco activity was generally the rate-limiting process. The temperature response of leaf respiration rates was greater in cold-grown (high altitude) plants compared with warm-grown (low altitude) plants. This thermal acclimation would enable plants to maintain a positive carbon budget over a greater temperature range.

12.
Oecologia ; 130(2): 309-314, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28547155

RESUMO

δ15N signatures of fossil peat were used to interpret past ecosystem processes on tectonically active subantarctic Macquarie Island. By comparing past vegetation reconstructed from the fossil record with present-day vegetation analogues, our evidence strongly suggests that changes in the δ15N signatures of fossil peat at this location reflect mainly past changes in the proportion of plant nitrogen derived from animal sources. Associated with uplift above sea level over the past 8,500 years, fossil records in two peat deposits on the island chronicle a change from coastal vegetation with fur and elephant seal disturbance to the existing inland herbfield. Coupled with this change are synchronous changes in the δ15N signatures of peat layers. At two sites 15N-enriched peat δ15N signatures of up to +17‰ were associated with a high abundance of pollen of the nitrophile Callitriche antarctica (Callitrichaceae). At one site fossil seal hair was also associated with enriched peat δ15N. Less 15N enriched δ15N signatures (e.g. -1.9‰ to +3.9‰) were measured in peat layers which lacked animal associated C. antarctica and Acaena spp. Interpretation of a third peat profile indicates continual occupation of a ridge site by burrowing petrels for most of the Holocene. We suggest that 15N signatures of fossil peat remained relatively stable with time once deposited, providing a significant new tool for interpreting the palaeoecology.

13.
Oecologia ; 117(1-2): 187-193, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28308485

RESUMO

Plants collected from diverse sites on subantarctic Macquarie Island varied by up to 30‰ in their leaf δ15N values. 15N natural abundance of plants, soils, animal excrement and atmospheric ammonia suggest that the majority of nitrogen utilised by plants growing in the vicinity of animal colonies or burrows is animal-derived. Plants growing near scavengers and animal higher in the food chain had highly enriched δ15N values (mean = 12.9‰), reflecting the highly enriched signature of these animals' excrement, while plants growing near nesting penguins and albatross, which have an intermediate food chain position, had less enriched δ15N values (>6‰). Vegetation in areas affected by rabbits had lower δ15N values (mean = 1.2‰), while the highly depleted δ15N values (below -5‰) of plants at upland plateau sites inland of penguin colonies, suggested that a portion of their nitrogen is derived from ammonia (mean 15N =-10‰) lost during the degradation of penguin guano. Vegetation in a remote area had δ15N values near -2‰. These results contrast with arctic and subarctic studies that attribute large variations in plant 15N values to nitrogen partitioning in nitrogen-limited environments. Here, plant 15N reflects the 15N of the likely nitrogen sources utilised by plants.

14.
PLoS One ; 8(8): e72093, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940805

RESUMO

Monitoring changes in the distribution and density of plant species often requires accurate and high-resolution baseline maps of those species. Detecting such change at the landscape scale is often problematic, particularly in remote areas. We examine a new technique to improve accuracy and objectivity in mapping vegetation, combining species distribution modelling and satellite image classification on a remote sub-Antarctic island. In this study, we combine spectral data from very high resolution WorldView-2 satellite imagery and terrain variables from a high resolution digital elevation model to improve mapping accuracy, in both pixel- and object-based classifications. Random forest classification was used to explore the effectiveness of these approaches on mapping the distribution of the critically endangered cushion plant Azorella macquariensis Orchard (Apiaceae) on sub-Antarctic Macquarie Island. Both pixel- and object-based classifications of the distribution of Azorella achieved very high overall validation accuracies (91.6-96.3%, κ = 0.849-0.924). Both two-class and three-class classifications were able to accurately and consistently identify the areas where Azorella was absent, indicating that these maps provide a suitable baseline for monitoring expected change in the distribution of the cushion plants. Detecting such change is critical given the threats this species is currently facing under altering environmental conditions. The method presented here has applications to monitoring a range of species, particularly in remote and isolated environments.


Assuntos
Monitoramento Ambiental/métodos , Mapeamento Geográfico , Plantas , Imagens de Satélites/métodos , Árvores , Regiões Antárticas , Ecossistema , Meio Ambiente , Ilhas , Plantas/classificação , Estações do Ano , Árvores/classificação
15.
Nat Ecol Evol ; 1(9): 1226-1227, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-29046543
16.
Biol Rev Camb Philos Soc ; 80(1): 45-72, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15727038

RESUMO

Alien microbes, fungi, plants and animals occur on most of the sub-Antarctic islands and some parts of the Antarctic continent. These have arrived over approximately the last two centuries, coincident with human activity in the region. Introduction routes have varied, but are largely associated with movement of people and cargo in connection with industrial, national scientific program and tourist operations. The large majority of aliens are European in origin. They have both direct and indirect impacts on the functioning of species-poor Antarctic ecosystems, in particular including substantial loss of local biodiversity and changes to ecosystem processes. With rapid climate change occurring in some parts of Antarctica, elevated numbers of introductions and enhanced success of colonization by aliens are likely, with consequent increases in impacts on ecosystems. Mitigation measures that will substantially reduce the risk of introductions to Antarctica and the sub-Antarctic must focus on reducing propagule loads on humans, and their food, cargo, and transport vessels.


Assuntos
Biodiversidade , Ecossistema , Animais , Animais Selvagens , Regiões Antárticas , Clima , Humanos , Desenvolvimento Vegetal , Densidade Demográfica , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA