Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 191(10): 1805-1821, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34214506

RESUMO

This study tested the hypothesis that diabetes promotes a greater than normal cytosolic calcium level in rod cells that activates a Ca2+-sensitive protease, calpain, resulting in oxidative stress and inflammation, two pathogenic factors of early diabetic retinopathy. Nondiabetic and 2-month diabetic C57Bl/6J and calpain1 knockout (Capn1-/-) mice were studied; subgroups were treated with a calpain inhibitor (CI). Ca2+ content was measured in photoreceptors using Fura-2. Retinal calpain expression was studied by quantitative RT-PCR and immunohistochemistry. Superoxide and expression of inflammatory proteins were measured using published methods. Proteomic analysis was conducted on photoreceptors isolated from untreated diabetic mice or treated daily with CI for 2 months. Cytosolic Ca2+ content was increased twofold in photoreceptors of diabetic mice as compared with nondiabetic mice. Capn1 expression increased fivefold in photoreceptor outer segments of diabetic mice. Pharmacologic inhibition or genetic deletion of Capn1 significantly suppressed diabetes-induced oxidative stress and expression of proinflammatory proteins in retina. Proteomics identified a protein (WW domain-containing oxidoreductase [WWOX]) whose expression was significantly increased in photoreceptors from mice diabetic for 2 months and was inhibited with CI. Knockdown of Wwox using specific siRNA in vitro inhibited increase in superoxide caused by the high glucose. These results suggest that reducing Ca2+ accumulation, suppressing calpain activation, and/or reducing Wwox up-regulation are novel targets for treating early diabetic retinopathy.


Assuntos
Cálcio/metabolismo , Calpaína/metabolismo , Retinopatia Diabética/patologia , Inflamação/patologia , Estresse Oxidativo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Animais , Calpaína/genética , Linhagem Celular , Retinopatia Diabética/complicações , Retinopatia Diabética/genética , Retinopatia Diabética/fisiopatologia , Ativação Enzimática/efeitos dos fármacos , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/farmacologia , Inflamação/complicações , Inflamação/genética , Inflamação/fisiopatologia , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteoma/metabolismo , Retina/patologia , Índice de Gravidade de Doença , Superóxidos/metabolismo , Regulação para Cima/efeitos dos fármacos , Visão Ocular/efeitos dos fármacos , Oxidorredutase com Domínios WW/metabolismo
2.
Brain ; 144(12): 3788-3807, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34972207

RESUMO

Pioglitazone, an FDA-approved compound, has been shown to target the novel mitochondrial protein mitoNEET and produce short-term neuroprotection and functional benefits following traumatic brain injury. To expand on these findings, we now investigate the dose- and time-dependent effects of pioglitazone administration on mitochondrial function after experimental traumatic brain injury. We then hypothesize that optimal pioglitazone dosing will lead to ongoing neuroprotection and cognitive benefits that are dependent on pioglitazone-mitoNEET signalling pathways. We show that delayed intervention is significantly more effective than early intervention at improving acute mitochondrial bioenergetics in the brain after traumatic brain injury. In corroboration, we demonstrate that mitoNEET is more heavily expressed, especially near the cortical contusion, in the 18 h following traumatic brain injury. To explore whether these findings relate to ongoing pathological and behavioural outcomes, mice received controlled cortical impact followed by initiation of pioglitazone treatment at either 3 or 18 h post-injury. Mice with treatment initiation at 18 h post-injury exhibited significantly improved behaviour and tissue sparing compared to mice with pioglitazone initiated at 3 h post-injury. Further using mitoNEET knockout mice, we show that this therapeutic effect is dependent on mitoNEET. Finally, we demonstrate that delayed pioglitazone treatment improves serial motor and cognitive performance in conjunction with attenuated brain atrophy after traumatic brain injury. This study illustrates that mitoNEET is the critical target for delayed pioglitazone intervention after traumatic brain injury, mitochondrial-targeting is highly time-dependent after injury and there is an extended therapeutic window to effectively treat mitochondrial dysfunction after brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Proteínas de Ligação ao Ferro/efeitos dos fármacos , Proteínas de Membrana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pioglitazona/farmacologia , Animais , Camundongos , Camundongos Endogâmicos C57BL
3.
Magn Reson Med ; 86(2): 1058-1066, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33755248

RESUMO

PURPOSE: QuEnch-assiSTed (QUEST) MRI provides a unique biomarker of excessive production of paramagnetic free radicals (oxidative stress) in vivo. The contribution from superoxide, a common upstream species found in oxidative stress-based disease, to the QUEST metric is unclear. Here, we begin to address this question by measuring superoxide spin-lattice relaxivity (r1) in phantoms. METHODS: Stable superoxide free radicals were generated in water phantoms of potassium superoxide ( KO2) . To measure r1, 1/T1 of different concentration solutions of KO2 in the presence and absence of the antioxidant superoxide dismutase were measured. The 1/T1 confounding factors including acquisition sequence, pH, and water source were also evaluated. RESULTS: The T1 -weighted signal intensity increased with KO2 concentration. No contribution from pH, or reaction products other than superoxide, noted on 1/T1 . Superoxide r1 was measured to be 0.29 mM-1  s-1 , in agreement with that reported for paramagnetic molecular oxygen and nitroxide free radicals. CONCLUSION: Our first-in-kind measurement of superoxide free radical r1 suggests a detection sensitivity of QUEST MRI on the order of tens of µM, within the reported level of free radical production during oxidative stress in vivo. Similar studies for other common free radicals are needed.


Assuntos
Imageamento por Ressonância Magnética , Superóxidos , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres , Estresse Oxidativo , Imagens de Fantasmas
4.
Vis Neurosci ; 37: E002, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32536351

RESUMO

Patients with diabetes continue to suffer from impaired visual performance before the appearance of overt damage to the retinal microvasculature and later sight-threatening complications. This diabetic retinopathy (DR) has long been thought to start with endothelial cell oxidative stress. Yet newer data surprisingly finds that the avascular outer retina is the primary site of oxidative stress before microvascular histopathology in experimental DR. Importantly, correcting this early oxidative stress is sufficient to restore vision and mitigate the histopathology in diabetic models. However, translating these promising results into the clinic has been stymied by an absence of methods that can measure and optimize anti-oxidant treatment efficacy in vivo. Here, we review imaging approaches that address this problem. In particular, diabetes-induced oxidative stress impairs dark-light regulation of subretinal space hydration, which regulates the distribution of interphotoreceptor binding protein (IRBP). IRBP is a vision-critical, anti-oxidant, lipid transporter, and pro-survival factor. We show how optical coherence tomography can measure subretinal space oxidative stress thus setting the stage for personalizing anti-oxidant treatment and prevention of impactful declines and loss of vision in patients with diabetes.


Assuntos
Retinopatia Diabética/prevenção & controle , Espaço Extracelular/metabolismo , Estresse Oxidativo/fisiologia , Animais , Canais de Cálcio Tipo L/metabolismo , Retinopatia Diabética/fisiopatologia , Células Ependimogliais/fisiologia , Humanos , Imageamento por Ressonância Magnética , Células Fotorreceptoras de Vertebrados/fisiologia , Epitélio Pigmentado da Retina/fisiologia , Transdução de Sinais/fisiologia , Tomografia de Coerência Óptica
5.
Neuroimage ; 200: 601-606, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31158477

RESUMO

PURPOSE: To achieve sufficient precision of R1 (=1/T1) maps of the fetal brain in utero to perform QUEnch-assiSTed (QUEST) MRI in which a significant anti-oxidant-induced reduction in R1 indicates oxidative stress. METHODS: C57BL/6 mouse fetuses in utero were gently and non-surgically isolated and secured using a homemade 3D printed clip. Using a commercial receive-only surface coil, brain maps of R1, an index sensitive to excessive and continuous free radical production, were collected using either a conventional Cartesian or a non-Cartesian (periodically rotated overlapping parallel lines with enhanced reconstruction) progressive saturation sequence. Data were normalized to the shortest TR time to remove bias. To assess oxidative stress, brain R1 maps were acquired on the lipopolysaccharide (LPS) model of preterm birth ±â€¯rosiglitazone (ROSI, which has anti-oxidant properties); phosphate buffered saline (PBS) controls ±â€¯ROSI were similarly studied. RESULTS: Sufficient quality R1 maps were generated by a combination of the 3D printed clip, surface coil detection, non-Cartesian sequence, and normalization scheme ensuring minimal fetal movement, good detection sensitivity, reduced motion artifacts, and minimal baseline variations, respectively. In the LPS group, the combined caudate-putamen and thalamus region R1 was reduced (p < 0.05) with ROSI treatment consistent with brain oxidative stress; no evidence for oxidative stress was found in the pons region. In the PBS control group, brain R1's did not change with ROSI treatment. CONCLUSION: The sensitivity and reproducibility of the combined approaches described herein enabled first-time demonstration of regional oxidative stress measurements of the fetal brain in utero using QUEST MRI.


Assuntos
Encéfalo/diagnóstico por imagem , Embrião de Mamíferos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estresse Oxidativo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Diagnóstico Pré-Natal
6.
Proc Natl Acad Sci U S A ; 113(14): 3885-90, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27006502

RESUMO

Fluid secretion by the ciliary body plays a critical and irreplaceable function in vertebrate vision by providing nutritive support to the cornea and lens, and by maintaining intraocular pressure. Here, we identify TRPV4 (transient receptor potential vanilloid isoform 4) channels as key osmosensors in nonpigmented epithelial (NPE) cells of the mouse ciliary body. Hypotonic swelling and the selective agonist GSK1016790A (EC50 ∼33 nM) induced sustained transmembrane cation currents and cytosolic [Formula: see text] elevations in dissociated and intact NPE cells. Swelling had no effect on [Formula: see text] levels in pigment epithelial (PE) cells, whereas depolarization evoked [Formula: see text] elevations in both NPE and PE cells. Swelling-evoked [Formula: see text] signals were inhibited by the TRPV4 antagonist HC067047 (IC50 ∼0.9 µM) and were absent in Trpv4(-/-) NPE. In NPE, but not PE, swelling-induced [Formula: see text] signals required phospholipase A2 activation. TRPV4 localization to NPE was confirmed with immunolocalization and excitation mapping approaches, whereas in vivo MRI analysis confirmed TRPV4-mediated signals in the intact mouse ciliary body. Trpv2 and Trpv4 were the most abundant vanilloid transcripts in CB. Overall, our results support a model whereby TRPV4 differentially regulates cell volume, lipid, and calcium signals in NPE and PE cell types and therefore represents a potential target for antiglaucoma medications.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Corpo Ciliar/fisiologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Glaucoma/patologia , Canais de Cátion TRPV/metabolismo , Visão Ocular/fisiologia , Animais , Cálcio/metabolismo , Tamanho Celular , Células Cultivadas , Ativação Enzimática , Leucina/análogos & derivados , Leucina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pressão Osmótica/fisiologia , Fosfolipases A2/metabolismo , Sulfonamidas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética
7.
NMR Biomed ; 31(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29327782

RESUMO

Spinally projecting neurons in the rostral ventrolateral medulla (RVLM) are believed to contribute to pathophysiological alterations in sympathetic nerve activity and the development of cardiovascular disease. The ability to identify changes in the activity of RVLM neurons in conscious animals and humans, especially longitudinally, would represent a clinically important advancement in our understanding of the contribution of the RVLM to cardiovascular disease. To this end, we describe the initial development of manganese-enhanced magnetic resonance imaging (MEMRI) for the rat RVLM. Manganese (Mn2+ ) has been used to estimate in vivo neuronal activity in other brain regions because of both its paramagnetic properties and its entry into and accumulation in active neurons. In this initial study, our three goals were as follows: (1) to validate that Mn2+ enhancement occurs in functionally and anatomically localized images of the rat RVLM; (2) to quantify the dose and time course dependence of Mn2+ enhancement in the RVLM after one systemic injection in conscious rats (66 or 33 mg/kg, intraperitoneally); and (3) to compare Mn2+ enhancement in the RVLM with other regions to determine an appropriate method of normalization of T1 -weighted images. In our proof-of-concept and proof-of-principle studies, Mn2+ was identified by MRI in the rat RVLM after direct microinjection or via retrograde transport following spinal cord injections, respectively. Systemic injections in conscious rats produced significant Mn2+ enhancement at 24 h (p < 0.05). Injections of 66 mg/kg produced greater enhancement than 33 mg/kg in the RVLM and paraventricular nucleus of the hypothalamus (p < 0.05 for both), but only when normalized to baseline scans without Mn2+ injection. Consistent with findings from our previous functional and anatomical studies demonstrating subregional neuroplasticity, Mn2+ enhancement was higher in the rostral regions of the RVLM (p < 0.05). Together with important technical considerations, our studies support the development of MEMRI as a potential method to examine RVLM activity over time in conscious animal subjects.


Assuntos
Estado de Consciência , Imageamento por Ressonância Magnética , Manganês/química , Bulbo/fisiologia , Animais , Peso Corporal , Líquido Cefalorraquidiano/metabolismo , Processamento de Imagem Assistida por Computador , Masculino , Manganês/administração & dosagem , Microinjeções , Músculos/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Ratos Sprague-Dawley , Medula Espinal/fisiologia , Fatores de Tempo
8.
FASEB J ; 31(9): 4179-4186, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28592637

RESUMO

Hippocampus oxidative stress is considered pathogenic in neurodegenerative diseases, such as Alzheimer disease (AD), and in neurodevelopmental disorders, such as Angelman syndrome (AS). Yet clinical benefits of antioxidant treatment for these diseases remain unclear because conventional imaging methods are unable to guide management of therapies in specific hippocampus subfields in vivo that underlie abnormal behavior. Excessive production of paramagnetic free radicals in nonhippocampus brain tissue can be measured in vivo as a greater-than-normal 1/T1 that is quenchable with antioxidant as measured by quench-assisted (Quest) MRI. Here, we further test this approach in phantoms, and we present proof-of-concept data in models of AD-like and AS hippocampus oxidative stress that also exhibit impaired spatial learning and memory. AD-like models showed an abnormal gradient along the CA1 dorsal-ventral axis of excessive free radical production as measured by Quest MRI, and redox-sensitive calcium dysregulation as measured by manganese-enhanced MRI and electrophysiology. In the AS model, abnormally high free radical levels were observed in dorsal and ventral CA1. Quest MRI is a promising in vivo paradigm for bridging brain subfield oxidative stress and behavior in animal models and in human patients to better manage antioxidant therapy in devastating neurodegenerative and neurodevelopmental diseases.-Berkowitz, B. A., Lenning, J., Khetarpal, N., Tran, C., Wu, J. Y., Berri, A. M., Dernay, K., Haacke, E. M., Shafie-Khorassani, F., Podolsky, R. H., Gant, J. C., Maimaiti, S., Thibault, O., Murphy, G. G., Bennett, B. M., Roberts, R. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Síndrome de Angelman/diagnóstico por imagem , Região CA1 Hipocampal/patologia , Estresse Oxidativo/fisiologia , Sintomas Prodrômicos , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Síndrome de Angelman/patologia , Animais , Antioxidantes , Cálcio/metabolismo , Radicais Livres , Imageamento por Ressonância Magnética/métodos , Manganês , Memória/fisiologia , Camundongos Knockout , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
FASEB J ; 29(2): 554-64, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25351983

RESUMO

Rod tetrameric arrestin 1 (tet-ARR1), stored in the outer nuclear layer/inner segments in the dark, modulates photoreceptor synaptic activity; light exposure stimulates a reduction via translocation to the outer segments for terminating G-protein coupled phototransduction signaling. Here, we test the hypothesis that intraretinal spin-lattice relaxation rate in the rotating frame (1/T1ρ), an endogenous MRI contrast mechanism, has high potential for evaluating rod tet-ARR1 and its reduction via translocation. Dark- and light-exposed mice (null for the ARR1 gene, overexpressing ARR1, diabetic, or wild type with or without treatment with Mn2+, a calcium channel probe) were studied using 1/T1ρ MRI. Immunohistochemistry and single-cell recordings of the retinas were also performed. In wild-type mice with or without treatment with Mn2+, 1/T1ρ of avascular outer retina (64% to 72% depth) was significantly (P < 0.05) greater in the dark than in the light; a significant (P < 0.05) but opposite pattern was noted in the inner retina (<50% depth). Light-evoked outer retina Δ1/T1ρ was absent in ARR1-null mice and supernormal in overexpressing mice. In diabetic mice, the outer retinal Δ1/T1ρ pattern suggested normal dark-to-light tet-ARR1 translocation and chromophore content, conclusions confirmed ex vivo. Light-stimulated Δ1/T1ρ in inner retina was linked to changes in blood volume. Our data support 1/T1ρ MRI for noninvasively assessing rod tet-ARR1 and its reduction via protein translocation, which can be combined with other metrics of retinal function in vivo.


Assuntos
Arrestinas/metabolismo , Biomarcadores/metabolismo , Imageamento por Ressonância Magnética/métodos , Segmento Externo da Célula Bastonete/metabolismo , Animais , Peso Corporal , Coloides/química , Diabetes Mellitus Experimental/fisiopatologia , Retinopatia Diabética , Compostos Férricos/química , Imuno-Histoquímica , Luz , Transdução de Sinal Luminoso , Masculino , Manganês/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Transporte Proteico , Retina/metabolismo , Retina/patologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Transdução de Sinais , beta-Arrestina 1 , beta-Arrestinas
10.
NMR Biomed ; 28(11): 1480-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26411897

RESUMO

A long-standing goal of substance abuse research has been to link drug-induced behavioral outcomes with the activity of specific brain regions to understand the neurobiology of addiction behaviors and to search for drug-able targets. Here, we tested the hypothesis that cocaine produces locomotor (behavioral) sensitization that correlates with increased calcium channel-mediated neuroactivity in brain regions linked with drug addiction, such as the nucleus accumbens (NAC), anterior striatum (AST) and hippocampus, as measured using manganese-enhanced MRI (MEMRI). Rats were treated with cocaine for 5 days, followed by a 2-day drug-free period. The following day, locomotor sensitization was quantified as a metric of cocaine-induced neuroplasticity in the presence of manganese. Immediately following behavioral testing, rats were examined for changes in calcium channel-mediated neuronal activity in the NAC, AST, hippocampus and temporalis muscle, which was associated with behavioral sensitization using MEMRI. Cocaine significantly increased locomotor activity and produced behavioral sensitization compared with saline treatment of control rats. A significant increase in MEMRI signal intensity was determined in the NAC, but not AST or hippocampus, of cocaine-treated rats compared with saline-treated control rats. Cocaine did not increase signal intensity in the temporalis muscle. Notably, in support of our hypothesis, behavior was significantly and positively correlated with MEMRI signal intensity in the NAC. As neuronal uptake of manganese is regulated by calcium channels, these results indicate that MEMRI is a powerful research tool to study neuronal activity in freely behaving animals and to guide new calcium channel-based therapies for the treatment of cocaine abuse and dependence.


Assuntos
Sinalização do Cálcio/fisiologia , Cocaína/administração & dosagem , Locomoção/fisiologia , Imageamento por Ressonância Magnética/métodos , Plasticidade Neuronal/fisiologia , Núcleo Accumbens/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Meios de Contraste/farmacocinética , Relação Dose-Resposta a Droga , Locomoção/efeitos dos fármacos , Masculino , Manganês/farmacocinética , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Estatística como Assunto
11.
Invest Ophthalmol Vis Sci ; 65(3): 21, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38488413

RESUMO

Purpose: The purpose of this study was to test the hypothesis that optical coherence tomography (OCT) bioenergy-linked and anatomical biomarkers are responsive to an acetazolamide (ACZ) provocation. Methods: C57BL/6J mice (B6J, a strain with relatively inefficient mitochondria) and 129S6/ev mice (S6, a strain with relatively efficient mitochondria) were given a single IP injection of ACZ (carbonic anhydrase inhibitor) or vehicle. In each mouse, the Mitochondrial Configuration within Photoreceptors based on the profile shape Aspect Ratio (MCP/AR) index was determined from the hyper-reflective band immediately posterior to the external limiting membrane (ELM). In addition, we tested for ACZ-induced acidification by measuring contraction of the external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness; the hyporeflective band (HB) signal intensity at the photoreceptor tips was also examined. Finally, the nuclear layer thickness was measured. Results: In response to ACZ, MCP/AR was greater-than-vehicle in B6J mice and lower-than-vehicle in S6 mice. ACZ-treated B6J and S6 mice both showed ELM-RPE contraction compared to vehicle-treated mice, consistent with dehydration in response to subretinal space acidification. The HB intensity at the photoreceptor tips and the outer nuclear layer thickness (B6J and S6), as well as the inner nuclear layer thickness of B6J mice, were all lower than vehicle following ACZ. Conclusions: Photoreceptor respiratory efficacy can be evaluated in vivo based on distinct rod mitochondria responses to subretinal space acidification measured with OCT biomarkers and an ACZ challenge, supporting and extending our previous findings measured with light-dark conditions.


Assuntos
Acetazolamida , Tomografia de Coerência Óptica , Camundongos , Animais , Tomografia de Coerência Óptica/métodos , Acetazolamida/farmacologia , Camundongos Endogâmicos C57BL , Retina , Biomarcadores
12.
Acta Neuropathol Commun ; 12(1): 85, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822433

RESUMO

Here, we test whether early visual and OCT rod energy-linked biomarkers indicating pathophysiology in nicotinamide nucleotide transhydrogenase (Nnt)-null 5xFAD mice also occur in Nnt-intact 5xFAD mice and whether these biomarkers can be pharmacologically treated. Four-month-old wild-type or 5xFAD C57BL/6 substrains with either a null (B6J) Nnt or intact Nnt gene (B6NTac) and 5xFAD B6J mice treated for one month with either R-carvedilol + vehicle or only vehicle (0.01% DMSO) were studied. The contrast sensitivity (CS), external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness (a proxy for low pH-triggered water removal), profile shape of the hyperreflective band just posterior to the ELM (i.e., the mitochondrial configuration within photoreceptors per aspect ratio [MCP/AR]), and retinal laminar thickness were measured. Both wild-type substrains showed similar visual performance indices and dark-evoked ELM-RPE contraction. The lack of a light-dark change in B6NTac MCP/AR, unlike in B6J mice, is consistent with relatively greater mitochondrial efficiency. 5xFAD B6J mice, but not 5xFAD B6NTac mice, showed lower-than-WT CS. Light-adapted 5xFAD substrains both showed abnormal ELM-RPE contraction and greater-than-WT MCP/AR contraction. The inner retina and superior outer retina were thinner. Treating 5xFAD B6J mice with R-carvedilol + DMSO or DMSO alone corrected CS and ELM-RPE contraction but not supernormal MCP/AR contraction or laminar thinning. These results provide biomarker evidence for prodromal photoreceptor mitochondrial dysfunction/oxidative stress/oxidative damage, which is unrelated to visual performance, as well as the presence of the Nnt gene. This pathophysiology is druggable in 5xFAD mice.


Assuntos
Dimetil Sulfóxido , Camundongos Endogâmicos C57BL , Animais , Camundongos , Dimetil Sulfóxido/farmacologia , Biomarcadores/metabolismo , Camundongos Transgênicos , Tomografia de Coerência Óptica , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Sensibilidades de Contraste/efeitos dos fármacos , Sensibilidades de Contraste/fisiologia , Modelos Animais de Doenças , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/metabolismo , Visão Ocular/efeitos dos fármacos , Visão Ocular/fisiologia
13.
J Biol Chem ; 287(20): 16424-34, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22451674

RESUMO

Caveolin-1 (Cav-1), an integral component of caveolar membrane domains, is expressed in several retinal cell types, including photoreceptors, retinal vascular endothelial cells, Müller glia, and retinal pigment epithelium (RPE) cells. Recent evidence links Cav-1 to ocular diseases, including autoimmune uveitis, diabetic retinopathy, and primary open angle glaucoma, but its role in normal vision is largely undetermined. In this report, we show that ablation of Cav-1 results in reduced inner and outer retinal function as measured, in vivo, by electroretinography and manganese-enhanced MRI. Somewhat surprisingly, dark current and light sensitivity were normal in individual rods (recorded with suction electrode methods) from Cav-1 knock-out (KO) mice. Although photoreceptor function was largely normal, in vitro, the apparent K(+) affinity of the RPE-expressed α1-Na(+)/K(+)-ATPase was decreased in Cav-1 KO mice. Cav-1 KO retinas also displayed unusually tight adhesion with the RPE, which could be resolved by brief treatment with hyperosmotic medium, suggesting alterations in outer retinal fluid homeostasis. Collectively, these findings demonstrate that reduced retinal function resulting from Cav-1 ablation is not photoreceptor-intrinsic but rather involves impaired subretinal and/or RPE ion/fluid homeostasis.


Assuntos
Caveolina 1/metabolismo , Microambiente Celular/fisiologia , Homeostase/fisiologia , Células Fotorreceptoras de Vertebrados/metabolismo , Epitélio Pigmentado da Retina/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Junções Íntimas/metabolismo , Animais , Caveolina 1/genética , Camundongos , Camundongos Knockout , Células Fotorreceptoras de Vertebrados/citologia , Potássio/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Epitélio Pigmentado da Retina/citologia , ATPase Trocadora de Sódio-Potássio/genética , Junções Íntimas/genética
14.
Invest Ophthalmol Vis Sci ; 64(3): 12, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36867132

RESUMO

Purpose: In Alzheimer's disease, central brain neurons show evidence for early hyperactivity. It is unclear if this occurs in the retina, another disease target. Here, we tested for imaging biomarker manifestation of prodromal hyperactivity in rod mitochondria in vivo in experimental Alzheimer's disease. Methods: Light- and dark-adapted 4-month-old 5xFAD and wild-type (WT) mice, both on a C57BL/6J background, were studied with optical coherence tomography (OCT). We measured the reflectivity profile shape of the inner segment ellipsoid zone (EZ) as a proxy for mitochondria distribution. Two additional indices responsive to mitochondria activity were also measured: the thickness of the external limiting membrane-retinal pigment epithelium (ELM-RPE) region and the signal magnitude of a hyporeflective band (HB) between photoreceptor tips and apical RPE. Retinal laminar thickness and visual performance were evaluated. Results: In response to low energy demand (light), WT mice showed the expected elongation in EZ reflectivity profile shape, relatively thicker ELM-RPE, and greater HB signal. Under high energy demand (dark), the EZ reflectivity profile shape was rounder, the ELM-RPE was thinner, and the HB was reduced. These OCT biomarker patterns for light-adapted 5xFAD mice did not match those of light-adapted WT mice but rather that of dark-adapted WT mice. Dark-adapted 5xFAD and WT mice showed the same biomarker pattern. The 5xFAD mice exhibited modest nuclear layer thinning and lower-than-normal contrast sensitivity. Conclusions: Results from three OCT bioenergy biomarkers raise the novel possibility of early rod hyperactivity in vivo in a common Alzheimer's disease model.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Camundongos Endogâmicos C57BL , Tomografia de Coerência Óptica , Biomarcadores , Mitocôndrias
15.
Front Neurosci ; 17: 1280453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046657

RESUMO

Purpose: To test the hypothesis that rod photoreceptor mitochondria function in vivo progressively declines over time. Methods: 2, 12, and 24 month-old dark- and light-adapted C57BL/6J (B6J) mice were examined by OCT. We measured (i) an index of mitochondrial configuration within photoreceptors measured from the profile shape aspect ratio (MCP/AR) of the hyperreflective band posterior to the external limiting membrane (ELM), (ii) a proxy for energy-dependent pH-triggered water removal, the thickness of the ELM-retinal pigment epithelium (ELM-RPE), and its correlate (iii) the hyporeflective band (HB) signal intensity at the photoreceptor tips. Visual performance was assessed by optokinetic tracking. Results: In 2 and 24 month-old mice, MCP/AR in both inferior and superior retina was smaller in light than in dark; no dark-light differences were noted in 12 month-old mice. Dark-adapted inferior and superior, and light-adapted superior, ELM-RPE thickness increased with age. The dark-light difference in ELM-RPE thickness remained constant across all ages. All ages showed a decreased HB signal intensity magnitude in dark relative to light. In 12 month-old mice, the dark-light difference in HB magnitude was greater than in younger and older mice. Anatomically, outer nuclear layer thickness decreased with age. Visual performance indices were reduced at 24 month-old compared to 2 month-old mice. Conclusion: While the working hypothesis was not supported herein, the results raise the possibility of a mid-life adaptation in rod mitochondrial function during healthy aging in B6J mice based on OCT biomarkers, a plasticity that occurred prior to declines in visual performance.

16.
EBioMedicine ; 98: 104865, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944273

RESUMO

BACKGROUND: Preterm birth preceded by spontaneous preterm labour often occurs in the clinical setting of sterile intra-amniotic inflammation (SIAI), a condition that currently lacks treatment. METHODS: Proteomic and scRNA-seq human data were analysed to evaluate the role of IL-6 and IL-1α in SIAI. A C57BL/6 murine model of SIAI-induced preterm birth was developed by the ultrasound-guided intra-amniotic injection of IL-1α. The blockade of IL-6R by using an aIL-6R was tested as prenatal treatment for preterm birth and adverse neonatal outcomes. QUEST-MRI evaluated brain oxidative stress in utero. Targeted transcriptomic profiling assessed maternal, foetal, and neonatal inflammation. Neonatal biometrics and neurodevelopment were tested. The neonatal gut immune-microbiome was evaluated using metagenomic sequencing and immunophenotyping. FINDINGS: IL-6 plays a critical role in the human intra-amniotic inflammatory response, which is associated with elevated concentrations of the alarmin IL-1α. Intra-amniotic injection of IL-1α resembles SIAI, inducing preterm birth (7% vs. 50%, p = 0.03, Fisher's exact test) and neonatal mortality (18% vs. 56%, p = 0.02, Mann-Whitney U-test). QUEST-MRI revealed no foetal brain oxidative stress upon in utero IL-1α exposure (p > 0.05, mixed linear model). Prenatal treatment with aIL-6R abrogated IL-1α-induced preterm birth (50% vs. 7%, p = 0.03, Fisher's exact test) by dampening inflammatory processes associated with the common pathway of labour. Importantly, aIL-6R reduces neonatal mortality (56% vs. 22%, p = 0.03, Mann-Whitney U-test) by crossing from the mother to the amniotic cavity, dampening foetal organ inflammation and improving growth. Beneficial effects of prenatal IL-6R blockade carried over to neonatal life, improving survival, growth, neurodevelopment, and gut immune homeostasis. INTERPRETATION: IL-6R blockade can serve as a strategy to treat SIAI, preventing preterm birth and adverse neonatal outcomes. FUNDING: NICHD/NIH/DHHS, Contract HHSN275201300006C. WSU Perinatal Initiative in Maternal, Perinatal and Child Health.


Assuntos
Nascimento Prematuro , Receptores de Interleucina-6 , Animais , Criança , Feminino , Humanos , Recém-Nascido , Camundongos , Gravidez , Líquido Amniótico , Inflamação/metabolismo , Interleucina-6/metabolismo , Nascimento Prematuro/prevenção & controle , Proteômica , Receptores de Interleucina-6/antagonistas & inibidores , Anticorpos Monoclonais/uso terapêutico
17.
Mol Vis ; 18: 2561-xxx, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23129976

RESUMO

PURPOSE: To test the hypothesis that in rats, intraretinal light-dependent changes on diffusion-weighted magnetic resonance imaging (MRI) in vivo are consistent with known retinal layer-specific physiology. METHODS: In male Sprague-Dawley rats, retinal morphology (thickness, extent, surface area, volume) and intraretinal profiles of the apparent diffusion coefficient (ADC, i.e., water mobility) parallel and perpendicular to the optic nerve were measured in vivo using quantitative MRI methods during light and dark stimulation. RESULTS: The parallel ADC in the posterior half of the avascular, photoreceptor-dominated outer retina was significantly higher in light than dark, and this pattern was reversed (dark>light) in the anterior outer retina. The perpendicular ADC in the posterior outer retina was similar in light and dark, but was significantly higher in dark than light in the anterior outer retina. No light-dark changes in the inner retina were noted. CONCLUSIONS: We identified light-dependent intraretinal diffusion changes that reflected established stimulation-based changes in outer retinal hydration. These findings are expected to motivate future applications of functional diffusion-based MRI in blinding disorders of the outer retina.


Assuntos
Nervo Óptico/fisiologia , Retina/fisiologia , Água/metabolismo , Animais , Adaptação à Escuridão , Difusão , Luz , Imageamento por Ressonância Magnética , Masculino , Nervo Óptico/ultraestrutura , Ratos , Ratos Sprague-Dawley , Retina/ultraestrutura
18.
Mol Vis ; 18: 372-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22355248

RESUMO

PURPOSE: To test the hypothesis that in dark-adapted diabetic mice subnormal manganese uptake in the outer retina can be ameliorated with exogenous 11-cis-retinal intervention. METHODS: Three groups were studied: age-matched controls and mice that had been diabetic for 3 months with and without acute, systemic 11-cis-retinal treatment administered 30 min before the manganese injection. Mice in each group were examined with manganese-enhanced magnetic resonance imaging (MEMRI) to assess central intraretinal manganese uptake and extraocular muscle manganese uptake. Bodyweights and glycated hemoglobin were determined. RESULTS: Both diabetic groups had lower bodyweights and higher glycated hemoglobin levels relative to controls; no differences in these parameters between diabetic groups were noted. No substantial differences in muscle uptake were noted between any of the groups. Diabetes produced a subnormal intraretinal uptake of manganese; acute exogenous 11-cis-retinal significantly corrected only outer retinal uptake, although not to control levels. CONCLUSIONS: The present results provide for the first time evidence that raises the possibility of a critical role of 11-cis-retinal, a key participant of the visual cycle, in diabetes-evoked outer retinal dysfunction.


Assuntos
Retinopatia Diabética/tratamento farmacológico , Retinaldeído/administração & dosagem , Animais , Peso Corporal/efeitos dos fármacos , Adaptação à Escuridão , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Hemoglobinas Glicadas/metabolismo , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/metabolismo , Transporte de Íons/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Manganês/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Retina/efeitos dos fármacos , Retina/metabolismo
19.
PNAS Nexus ; 1(4): pgac208, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36338188

RESUMO

Fast (seconds) and slow (minutes to hours) optical coherence tomography (OCT) responses to light stimulation have been developed to probe outer retinal function with higher spatial resolution than the classical full-field electroretinogram (ERG). However, the relationships between functional information revealed by OCT and ERG are largely unexplored. In this study, we directly compared the fast and slow OCT responses with the ERG. Fast responses [i.e. the optoretinogram (ORG)] are dominated by reflectance changes in the outer segment (OS) and the inner segment ellipsoid zone (ISez). The ORG OS response has faster kinetics and a higher light sensitivity than the ISez response, and both differ significantly with ERG parameters. Sildenafil-inhibition of phototransduction reduced the ORG light sensitivity, suggesting a complete phototransduction pathway is needed for ORG responses. Slower OCT responses were dominated by light-induced changes in the external limiting membrane to retinal pigment epithelium (ELM-RPE) thickness and photoreceptor-tip hyporeflective band (HB) magnitudes, with the biggest changes occurring after prolonged light stimulation. Mice with high (129S6/ev) vs. low (C57BL/6 J) ATP(adenosine triphosphate) synthesis efficiency show similar fast ORG, but dissimilar slow OCT responses. We propose that the ORG reflects passive physiology, such as water movement from photoreceptors, in response to the photocurrent response (measurable by ERG), whereas the slow OCT responses measure mitochondria-driven physiology in the outer retina, such as dark-provoked water removal from the subretinal space.

20.
Invest Ophthalmol Vis Sci ; 63(8): 8, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35816042

RESUMO

Purpose: To test the hypothesis that changing energy needs alter mitochondria distribution within the rod inner segment ellipsoid. Methods: In mice with relatively smaller (C57BL/6J [B6J]) or greater (129S6/ev [S6]) retina mitochondria maximum reserve capacity, the profile shape of the rod inner segment ellipsoid zone (ISez) was measured with optical coherence tomography (OCT) under higher (dark) or lower (light) energy demand conditions. ISez profile shape was characterized using an unbiased ellipse descriptor (minor/major aspect ratio). Other bioenergy indexes evaluated include the external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness and the magnitude of the signal intensity of a hyporeflective band located between the photoreceptor tips and apical RPE. The spatial distribution of rod ellipsoid mitochondria were also examined with electron microscopy. Results: In B6J mice, darkness produced a greater ISez aspect ratio, thinner ELM-RPE, and a smaller hyporeflective band intensity than in light. In S6 mice, dark and light ISez aspect ratio values were not different and were greater than in light-adapted B6J mice; dark-adapted S6 mice showed smaller ELM-RPE thinning versus light, and negligible hyporeflective band intensity in the light. In B6J mice, mitochondria number in light increased in the distal inner segment ellipsoid and decreased proximally. In S6 mice, mitochondria number in the inner segment ellipsoid were not different between light and dark, and were greater than in B6J mice. Conclusions: These data raise the possibility that rod mitochondria activity in mice can be noninvasively evaluated based on the ISez profile shape, a new OCT index that complements OCT energy biomarkers measured outside of the ISez region.


Assuntos
Segmento Interno das Células Fotorreceptoras da Retina , Tomografia de Coerência Óptica , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Retina , Tomografia de Coerência Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA