Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 324(4): H473-H483, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36735405

RESUMO

Excess salt consumption contributes to hypertension and arterial dysfunction in humans living in industrialized societies. However, this arterial phenotype is not typically observed in inbred, genetically identical mouse strains that consume a high-salt (HS) diet. Therefore, we sought to determine the effects of HS diet consumption on systolic blood pressure (BP) and arterial function in UM-HET3 mice, an outbred, genetically diverse strain of mice. Male and female UM-HET3 mice underwent a low-salt [LS (1% NaCl)] or HS (4% NaCl) diet for 12 wk. Systolic BP and aortic stiffness, determined by pulse wave velocity (PWV), were increased in HS after 2 and 4 wk, respectively, compared with baseline and continued to increase through week 12 (P < 0.05). Systolic BP was higher from weeks 2-12 and PWV was higher from weeks 4-12 in HS compared with LS mice (P < 0.05). Aortic collagen content was ∼81% higher in HS compared with LS (P < 0.05), whereas aortic elastin content was similar between groups (P > 0.05). Carotid artery endothelium-dependent dilation (EDD) was ∼10% lower in HS compared with LS (P < 0.05), endothelium-independent dilation was similar between groups (P > 0.05). Finally, there was a strong relationship between systolic BP and PWV (r2 = 0.40, P < 0.05), as well as inverse relationship between EDD and systolic BP (r2 = 0.21, P < 0.05) or PWV (r2 = 0.20, P < 0.05). In summary, HS diet consumption in UM-HET3 mice increases systolic BP, which is accompanied by aortic stiffening and impaired EDD. These data suggest that outbred, genetically diverse mice may provide unique translational insight into arterial adaptations of humans that consume an HS diet.NEW & NOTEWORTHY Excess salt consumption is a contributor to hypertension and arterial dysfunction in humans living in industrialized societies, but this phenotype is not observed in inbred, genetically identical mice that consume a high-salt (HS) diet. This study reveals that a HS diet in outbred, genetically diverse mice progressively increases systolic blood pressure and induce arterial dysfunction. These data suggest that genetically diverse mice may provide translational insight into arterial adaptations in humans that consume an HS diet.


Assuntos
Hipertensão , Cloreto de Sódio , Humanos , Masculino , Feminino , Camundongos , Animais , Pressão Sanguínea , Cloreto de Sódio/farmacologia , Análise de Onda de Pulso , Cloreto de Sódio na Dieta , Dieta
2.
Proc Biol Sci ; 286(1908): 20191270, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31362642

RESUMO

Chitinozoans are organic-walled microfossils widely recorded in Ordovician to Devonian (ca 485-359 Mya) marine sediments and extensively used in high-resolution biostratigraphy. Their biological affinity remains unknown, but most commonly, they are interpreted as eggs of marine metazoans. Here, we provide new insights into their palaeobiology from three lines of inquiry. We examine morphological variation of a new, well-preserved Late Ordovician species, Hercochitina violana; analyse a compiled dataset of measurements on 378 species representing all known chitinozoan genera; and compare these data with the size variation of eggs of both extinct and extant aquatic invertebrates. The results indicate that the magnitude of size variation within chitinozoan species is larger than observed in fossil and modern eggs. Additionally, delicate morphological structures of chitinozoans, such as prosome and complex ornamentation, are inconsistent with the egg hypothesis. Distinct and continuous morphological variation in H. violana is more plausibly interpreted as an ontogenetic series of individual microorganisms, rather than as eggs.


Assuntos
Fósseis/ultraestrutura , Invertebrados/classificação , Animais , Invertebrados/ultraestrutura , Microscopia Eletrônica de Varredura
3.
Proc Biol Sci ; 280(1758): 20130140, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23486441

RESUMO

Understanding the determinants of variation in the extent of species distributions is a fundamental goal of ecology. The diversity of geographical range sizes (GRSs) in mammals spans 12 orders of magnitude. A long-standing macroecological model of this diversity holds that as body size increases, species are increasingly restricted to occupying larger GRS. Here, we show that the body size-GRS relationship is more complex than previously recognized. Our study reveals that the positive relationship between body size and GRS does not hold across the entire size range of mammals. Instead, there is a break point in the relationship around the modal mammal body size. For species smaller than the mode, GRS actually decreases with body size. We discuss mechanisms to account for these observations in the context of the energetics of body size. We also examine the possibility that the patterns are the result of a statistical artefact from combining two random, uni-modal, skewed distributions, but conclude that the patterns we describe are not artefactual. Our results redefine our view of the functional relationship between body size, energetics and GRS in mammals with implications for assessing vulnerability to extinction resulting from range size reductions driven by large-scale environmental change.


Assuntos
Distribuição Animal , Tamanho Corporal , Mamíferos/fisiologia , Animais , Conservação dos Recursos Naturais , Metabolismo Energético , Extinção Biológica , Modelos Biológicos
5.
Geohealth ; 6(10): e2022GH000614, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36267339

RESUMO

Ecological calendars are knowledge systems based on close observation of one's habitat to measure and give meaning to time, thereby providing anticipatory capacity for livelihood activities and contributing to food sovereignty. They rely upon seasonal indicators that integrate biophysical and ecological phenomena (e.g., first snowfall, last frost, blossoming of a tree species; seasonal appearance of an animal or plant) with locally grounded cultural meaning and value systems. These context-specific relationships have enabled Indigenous and rural societies to anticipate weather and other seasonal processes in their environment. However, anthropogenic climate change could undermine ecological calendars due to adverse impacts on specific indicators species, but this issue remains unexplored. We address this knowledge gap by examining how anthropogenic climate change might affect selected species (birds, fish, and mammals) that are seasonal and key to Indigenous food systems in two Western Arctic communities. We leverage existing dietary animal datasets to which we apply a novel methodology for assessing organismal vulnerability to climate change. The methodology uses intrinsic species traits such as physiological tolerances, genetic variability, and life history traits to generate an empirical and integrative assessment of vulnerability for any given species. Subsequently, an aggregate view of vulnerability across calendar species is achieved through comparative statistical analysis across species both within and between communities. This exercise permits the first quantitative assessment of the continued relevance and effective use of an ecological calendar, thus demonstrating that food sovereignty and livelihood security is enhanced by biodiversity of indicator species.

6.
Ecol Evol ; 12(6): e8963, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35784046

RESUMO

Turtles have been prominent subjects of sexual size dimorphism (SSD) analyses due to their compact taxonomy, mating systems, and habitat diversity. In prior studies, marine turtles were grouped with fully aquatic non-marine turtles (NMATs). This is interesting because it is well-established that the marine environment imposes a distinct selective milieu on body form of vagile vertebrates, driven by convergent adaptations for energy-efficient propulsion and drag reduction. We generated a comprehensive database of adult marine turtle body sizes (38,569 observations across all species), which we then used to evaluate the magnitude of SSD in marine turtles and how it compares to SSD in NMAT. We find that marine turtles are only minimally sexually size dimorphic, whereas NMAT typically exhibit female-biased SSD. We argue that the reason for this difference is the sustained long-distance swimming that characterizes marine turtle ecology, which entails significant energetic costs incurred by both sexes. Hence, the ability of either sex to allocate proportionately more to growth than the other is likely constrained, meaning that sexual differences in growth and resultant body size are not possible. Consequently, grouping marine turtles with NMAT dilutes the statistical signature of different kinds of selection on SSD and should be avoided in future studies.

7.
Front Nutr ; 9: 1090023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687716

RESUMO

Western diet (WD), characterized by excess saturated fat and sugar intake, is a major contributor to obesity and metabolic and arterial dysfunction in humans. However, these phenotypes are not consistently observed in traditional inbred, genetically identical mice. Therefore, we sought to determine the effects of WD on visceral adiposity and metabolic/arterial function in UM-HET3 mice, an outbred, genetically diverse strain of mice. Male and female UM-HET3 mice underwent normal chow (NC) or WD for 12 weeks. Body mass and visceral adiposity were higher in WD compared to NC (P < 0.05). Female WD mice had greater visceral adiposity than male WD mice (P < 0.05). The results of glucose and insulin tolerance tests demonstrated that metabolic function was lower in WD compared to NC mice (P < 0.05). Metabolic dysfunction in WD as was driven by male mice, as metabolic function in female WD mice was unchanged (P > 0.05). Systolic blood pressure (BP) and aortic stiffness were increased in WD after 2 weeks compared to baseline and continued to increase through week 12 (P < 0.05). Systolic BP and aortic stiffness were higher from weeks 2-12 in WD compared to NC (P < 0.05). Aortic collagen content was higher in WD compared to NC (P < 0.05). Carotid artery endothelium-dependent dilation was lower in WD compared to NC (P < 0.05). These data suggest sex-related differences in visceral adiposity and metabolic dysfunction in response to WD. Despite this, arterial dysfunction was similar in male and female WD mice, indicating this model may provide unique translational insight into similar sex-related observations in humans that consume WD.

8.
Am Nat ; 174(5): 595-612, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19788354

RESUMO

Widespread recognition of the importance of biological studies at large spatial and temporal scales, particularly in the face of many of the most pressing issues facing humanity, has fueled the argument that there is a need to reinvigorate such studies in physiological ecology through the establishment of a macrophysiology. Following a period when the fields of ecology and physiological ecology had been regarded as largely synonymous, studies of this kind were relatively commonplace in the first half of the twentieth century. However, such large-scale work subsequently became rather scarce as physiological studies concentrated on the biochemical and molecular mechanisms underlying the capacities and tolerances of species. In some sense, macrophysiology is thus an attempt at a conceptual reunification. In this article, we provide a conceptual framework for the continued development of macrophysiology. We subdivide this framework into three major components: the establishment of macrophysiological patterns, determining the form of those patterns (the very general ways in which they are shaped), and understanding the mechanisms that give rise to them. We suggest ways in which each of these components could be developed usefully.


Assuntos
Modelos Biológicos , Fisiologia , Ecossistema
9.
Biol Rev Camb Philos Soc ; 94(6): 1947-1973, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31338959

RESUMO

The idea that interspecific variation in trophic morphology among closely related species effectively permits resource partitioning has driven research on ecological radiation since Darwin first described variation in beak morphology among Geospiza. Marine turtles comprise an ecological radiation in which interspecific differences in trophic morphology have similarly been implicated as a pathway to ecopartition the marine realm, in both extant and extinct species. Because marine turtles are charismatic flagship species of conservation concern, their trophic ecology has been studied intensively using stable isotope analyses to gain insights into habitat use and diet, principally to inform conservation management. This legion of studies provides an unparalleled opportunity to examine ecological partitioning across numerous hierarchical levels that heretofore has not been applied to any other ecological radiation. Our contribution aims to provide a quantitative analysis of interspecific variation and a comprehensive review of intraspecific variation in trophic ecology across different hierarchical levels marshalling insights about realised trophic ecology derived from stable isotopes. We reviewed 113 stable isotope studies, mostly involving single species, and conducted a meta-analysis of data from adults to elucidate differences in trophic ecology among species. Our study reveals a more intricate hierarchy of ecopartitioning by marine turtles than previously recognised based on trophic morphology and dietary analyses. We found strong statistical support for interspecific partitioning, as well as a continuum of intraspecific trophic sub-specialisation in most species across several hierarchical levels. This ubiquity of trophic specialisation across many hierarchical levels exposes a far more complex view of trophic ecology and resource-axis exploitation than suggested by species diversity alone. Not only do species segregate along many widely understood axes such as body size, macrohabitat, and trophic morphology but the general pattern revealed by isotopic studies is one of microhabitat segregation and variation in foraging behaviour within species, within populations, and among individuals. These findings are highly relevant to conservation management because they imply ecological non-exchangeability, which introduces a new dimension beyond that of genetic stocks which drives current conservation planning. Perhaps the most remarkable finding from our data synthesis is that four of six marine turtle species forage across several trophic levels. This pattern is unlike that seen in other large marine predators, which forage at a single trophic level according to stable isotopes. This finding affirms suggestions that marine turtles are robust sentinels of ocean health and likely stabilise marine food webs. This insight has broader significance for studies of marine food webs and trophic ecology of large marine predators. Beyond insights concerning marine turtle ecology and conservation, our findings also have broader implications for the study of ecological radiations. Particularly, the unrecognised complexity of ecopartitioning beyond that predicted by trophic morphology suggests that this dominant approach in adaptive radiation research likely underestimates the degree of resource overlap and that interspecific disparities in trophic morphology may often over-predict the degree of realised ecopartitioning. Hence, our findings suggest that stable isotopes can profitably be applied to study other ecological radiations and may reveal trophic variation beyond that reflected by trophic morphology.


Assuntos
Organismos Aquáticos/fisiologia , Cadeia Alimentar , Tartarugas/fisiologia , Animais
10.
Sci Data ; 6(1): 16, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944336

RESUMO

Marine turtles are both flagship species of conservation concern and indicators of ocean health. As highly migratory species, and despite substantial research effort focusing on nesting females and satellite tagging studies, we still know little about the trophic ecology and habitat use of immature stages and males. Consequently, marine turtle biologists began using stable isotope analyses in the last decade to elucidate various aspects of trophic ecology, including habitat use and trophic position. This has resulted in a burgeoning but largely disconnected literature of mostly single-species case studies. Here we comprehensively synthesize this body of work into a unified data repository, the MarTurtSI database. MarTurtSI contains stable isotope data from six of seven marine turtle species ranging from juveniles to adults, in different developmental, feeding, and breeding habitats across multiple ocean basins. MarTurtSI will be curated and updated with the aim of enabling continued comprehensive and global investigations into the trophic ecology of marine turtles especially in the face of climate change and other conservation challenges.


Assuntos
Bases de Dados Factuais , Tartarugas/fisiologia , Animais , Comportamento Alimentar , Feminino , Marcação por Isótopo , Masculino , Reprodução
11.
Zootaxa ; 4263(3): 467-506, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28609856

RESUMO

The Coastal Plain of the southeastern U. S. is one of the planet's top biodiversity hotspots and yet many taxa have not been adequately studied. The plethodontid salamander, Desmognathus auriculatus, was originally thought to occur from east Texas to Virginia, a range spanning dozens of interfluves and large river systems. Beamer and Lamb (2008) found five independent mitochondrial lineages of what has been called D. auriculatus in the Atlantic Coastal Plain, but did not examine the extensive distribution of D. auriculatus in the Gulf Coastal Plain. We present morphological and molecular genetic data distinguishing two evolutionarily independent and distantly related lineages that are currently subsumed under the taxon D. auriculatus in the eastern Gulf Coastal Plain. We describe one of these as a new species, Desmognathus valentinei sp. nov., and assign the second one to D. auriculatus which we formally redescribe.


Assuntos
Urodelos , Animais , Filogenia , Texas , Estados Unidos , Virginia
12.
Steroids ; 87: 59-66, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24928725

RESUMO

Androgens regulate body composition and skeletal muscle mass in males, but the molecular mechanisms are not fully understood. Recently, we demonstrated that trenbolone (a potent synthetic testosterone analogue that is not a substrate for 5-alpha reductase or for aromatase) induces myotrophic effects in skeletal muscle without causing prostate enlargement, which is in contrast to the known prostate enlarging effects of testosterone. These previous results suggest that the 5α-reduction of testosterone is not required for myotrophic action. We now report differential gene expression in response to testosterone versus trenbolone in the highly androgen-sensitive levator ani/bulbocavernosus (LABC) muscle complex of the adult rat after 6weeks of orchiectomy (ORX), using real time PCR. The ORX-induced expression of atrogenes (Muscle RING-finger protein-1 [MuRF1] and atrogin-1) was suppressed by both androgens, with trenbolone producing a greater suppression of atrogin-1 mRNA compared to testosterone. Both androgens elevated expression of anabolic genes (insulin-like growth factor-1 and mechano-growth factor) after ORX. ORX-induced increases in expression of glucocorticoid receptor (GR) mRNA were suppressed by trenbolone treatment, but not testosterone. In ORX animals, testosterone promoted WNT1-inducible-signaling pathway protein 2 (WISP-2) gene expression while trenbolone did not. Testosterone and trenbolone equally enhanced muscle regeneration as shown by increases in LABC mass and in protein expression of embryonic myosin by western blotting. In addition, testosterone increased WISP-2 protein levels. Together, these findings identify specific mechanisms by which testosterone and trenbolone may regulate skeletal muscle maintenance and growth.


Assuntos
Androgênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/metabolismo , Testosterona/farmacologia , Transcrição Gênica/efeitos dos fármacos , Acetato de Trembolona/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Proteínas de Sinalização Intercelular CCN/metabolismo , Masculino , Músculos/patologia , Músculos/fisiologia , Atrofia Muscular/genética , Miosinas/metabolismo , Orquiectomia , Tamanho do Órgão/efeitos dos fármacos , Ratos , Receptores Androgênicos/genética , Receptores de Glucocorticoides/genética , Regeneração/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Fatores de Tempo
13.
PLoS One ; 8(9): e72731, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058444

RESUMO

Physiological processes are essential for understanding the distribution and abundance of organisms, and recently, with widespread attention to climate change, physiology has been ushered back to the forefront of ecological thinking. We present a macrophysiological analysis of the energetics of geographic range size using combined data on body size, basal metabolic rate (BMR), phylogeny and range properties for 574 species of mammals. We propose three mechanisms by which interspecific variation in BMR should relate positively to geographic range size: (i) Thermal Plasticity Hypothesis, (ii) Activity Levels/Dispersal Hypothesis, and (iii) Energy Constraint Hypothesis. Although each mechanism predicts a positive correlation between BMR and range size, they can be further distinguished based on the shape of the relationship they predict. We found evidence for the predicted positive relationship in two dimensions of energetics: (i) the absolute, mass-dependent dimension (BMR) and (ii) the relative, mass-independent dimension (MIBMR). The shapes of both relationships were similar and most consistent with that expected from the Energy Constraint Hypothesis, which was proposed previously to explain the classic macroecological relationship between range size and body size in mammals and birds. The fact that this pattern holds in the MIBMR dimension indicates that species with supra-allometric metabolic rates require among the largest ranges, above and beyond the increasing energy demands that accrue as an allometric consequence of large body size. The relationship is most evident at high latitudes north of the Tropics, where large ranges and elevated MIBMR are most common. Our results suggest that species that are most vulnerable to extinction from range size reductions are both large-bodied and have elevated MIBMR, but also, that smaller species with elevated MIBMR are at heightened risk. We also provide insights into the global latitudinal trends in range size and MIBMR and more general issues of phylogenetic and geographic scale.


Assuntos
Distribuição Animal/fisiologia , Metabolismo Basal/fisiologia , Tamanho Corporal/fisiologia , Mamíferos/fisiologia , Animais , Aves , Temperatura Corporal , Regulação da Temperatura Corporal/fisiologia , Peso Corporal , Clima Frio , Filogeografia , Clima Tropical
15.
Biol Lett ; 3(6): 695-8, 2007 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17711816

RESUMO

Global warming is now recognized as the dominant threat to biodiversity because even protected populations and habitats are susceptible. Nonetheless, current criteria for evaluating species' relative endangerment remain purely ecological, and the accepted conservation strategies of habitat preservation and population management assume that species can mount ecological responses if afforded protection. The insidious threat from climate change is that it will attenuate or preclude ecological responses by species that are physiologically constrained; yet, quantitative, objective criteria for assessing relative susceptibility of diverse taxa to warming-induced stress are wanting. We explored the utility of using interspecies physiological variation for this purpose by relating species' physiological phenotypes to landscape patterns of ecological and genetic exchange. Using a salamander model system in which ecological, genetic and physiological diversity are well characterized, we found strong quantitative relationships of basal metabolic rates (BMRs) to both macroecological and phylogeographic patterns, with decreasing BMR leading to dispersal limitation (small contemporary ranges with marked phylogeographic structure). Measures of intrinsic physiological tolerance, which vary systematically with macroecological and phylogeographic patterns, afford objective criteria for assessing endangerment across a wide range of species and should be incorporated into conservation assessment criteria that currently rely exclusively upon ecological predictors.


Assuntos
Conservação dos Recursos Naturais , Geografia , Efeito Estufa , Filogenia , Urodelos/fisiologia , Aclimatação , Animais , Metabolismo Basal , Biodiversidade , Tamanho Corporal , Especificidade da Espécie , Urodelos/anatomia & histologia , Urodelos/classificação
16.
Biol Lett ; 2(1): 135-9, 2006 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-17148347

RESUMO

Recent syntheses indicate that global warming affects diverse biological processes, but also highlight the potential for some species to adapt behaviourally or evolutionarily to rapid climate change. Far less attention has addressed the alternative, that organisms lacking this ability may face extinction, a fate projected to befall one-quarter of global biodiversity. This conclusion is controversial, in part because there exist few mechanistic studies that show how climate change could precipitate extinction. We provide a concrete, mechanistic example of warming as a stressor of organisms that are closely adapted to cool climates from a comparative analysis of organismal tolerance among clinally varying populations along a natural thermal gradient. We found that two montane salamanders exhibit significant metabolic depression at temperatures within the natural thermal range experienced by low and middle elevation populations. Moreover, the magnitude of depression was inversely related to native elevation, suggesting that low elevation populations are already living near the limit of their physiological tolerances. If this finding generally applies to other montane specialists, the prognosis for biodiversity loss in typically diverse montane systems is sobering. We propose that indices of warming-induced stress tolerance may provide a critical new tool for quantitative assessments of endangerment due to anthropogenic climate change across diverse species.


Assuntos
Extinção Biológica , Efeito Estufa , Urodelos/fisiologia , Animais , População , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA