Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 54(6): 1186-1199.e7, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33915108

RESUMO

A cardinal feature of COVID-19 is lung inflammation and respiratory failure. In a prospective multi-country cohort of COVID-19 patients, we found that increased Notch4 expression on circulating regulatory T (Treg) cells was associated with disease severity, predicted mortality, and declined upon recovery. Deletion of Notch4 in Treg cells or therapy with anti-Notch4 antibodies in conventional and humanized mice normalized the dysregulated innate immunity and rescued disease morbidity and mortality induced by a synthetic analog of viral RNA or by influenza H1N1 virus. Mechanistically, Notch4 suppressed the induction by interleukin-18 of amphiregulin, a cytokine necessary for tissue repair. Protection by Notch4 inhibition was recapitulated by therapy with Amphiregulin and, reciprocally, abrogated by its antagonism. Amphiregulin declined in COVID-19 subjects as a function of disease severity and Notch4 expression. Thus, Notch4 expression on Treg cells dynamically restrains amphiregulin-dependent tissue repair to promote severe lung inflammation, with therapeutic implications for COVID-19 and related infections.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Celular , Pneumonia Viral/etiologia , Pneumonia Viral/metabolismo , Receptor Notch4/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Anfirregulina/farmacologia , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imuno-Histoquímica , Imunomodulação/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Vírus da Influenza A/fisiologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Transgênicos , Pneumonia Viral/patologia , Receptor Notch4/antagonistas & inibidores , Receptor Notch4/genética , Índice de Gravidade de Doença
2.
Nitric Oxide ; 146: 24-30, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521488

RESUMO

BACKGROUND: Cardiopulmonary bypass (CPB) is associated with intravascular hemolysis which depletes endogenous nitric oxide (NO). The impact of hemolysis on pulmonary arterial compliance (PAC) and right ventricular systolic function has not been explored yet. We hypothesized that decreased NO availability is associated with worse PAC and right ventricular systolic function after CPB. METHODS: This is a secondary analysis of an observational cohort study in patients undergoing cardiac surgery with CPB at Massachusetts General Hospital, USA (2014-2015). We assessed PAC (stroke volume/pulmonary artery pulse pressure ratio), and right ventricular function index (RVFI) (systolic pulmonary arterial pressure/cardiac output), as well as NO consumption at 15 min, 4 h and 12 h after CPB. Patients were stratified by CPB duration. Further, we assessed the association between changes in NO consumption with PAC and RVFI between 15min and 4 h after CPB. RESULTS: PAC was lowest at 15min after CPB and improved over time (n = 50). RVFI was highest -worse right ventricular function- at CPB end and gradually decreased. Changes in hemolysis, PAC and RVFI differed over time by CPB duration. PAC inversely correlated with total pulmonary resistance (TPR). TPR and PAC positively and negatively correlated with RVFI, respectively. NO consumption between 15min and 4 h after CPB correlated with changes in PAC (-0.28 ml/mmHg, 95%CI -0.49 to -0.01, p = 0.012) and RVFI (0.14 mmHg*L-1*min, 95%CI 0.10 to 0.18, p < 0.001) after multivariable adjustments. CONCLUSION: PAC and RVFI are worse at CPB end and improve over time. Depletion of endogenous NO may contribute to explain changes in PAC and RVFI after CPB.


Assuntos
Ponte Cardiopulmonar , Hemólise , Artéria Pulmonar , Função Ventricular Direita , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Função Ventricular Direita/fisiologia , Idoso , Artéria Pulmonar/fisiologia , Artéria Pulmonar/fisiopatologia , Óxido Nítrico/metabolismo , Sístole/fisiologia , Estudos de Coortes , Complacência (Medida de Distensibilidade)
3.
Nitric Oxide ; 149: 41-48, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880198

RESUMO

BACKGROUND: Inhaled nitric oxide (iNO) showed to improve oxygenation at low doses by reducing intrapulmonary shunt and to display antiviral properties at high doses. To assess the safety and potential benefits, we designed an exploratory clinical trial comparing low-dose with intermittent high-dose iNO to only intermittent high-dose iNO in hypoxemic COVID-19 patients. METHODS: In this single-center interventional non-inferiority randomized trial (ClinicalTrials.gov, NCT04476992), twenty oxygen-dependent COVID-19 patients were randomly assigned to the high-dose (200 ppm for 30 min) + continuous low-dose (20 ppm) iNO group (iNO200/20) or the high-dose iNO group (iNO200). Methemoglobinemia (MetHb) assessed 48 h after iNO initiation was the primary endpoint. Reverse-transcription polymerase chain reaction for SARS-CoV-2, inflammatory markers during hospitalization, and heart ultrasounds during the iNO200 treatments were evaluated. RESULTS: MetHb difference between iNO groups remained within the non-inferiority limit of 3 %, indicating comparable treatments despite being statistically different (p-value<0.01). Both groups presented similar SpO2/FiO2 ratio at 48 h (iNO200 vs. iNO200/20 341[334-356] vs. 359 [331-380], respectively, p-value = 0.436). Both groups showed the same time to SARS-CoV-2 negativization, hospital length of stay, and recovery time. iNO-treated patients showed quicker SARS-CoV-2 negativization compared to a similar group of non-iNO patients (HR 2.57, 95%CI 1.04-6.33). During the 228 treatments, iNO200 and iNO200/20 groups were comparable for safety, hemodynamic stability, and respiratory function improvement. CONCLUSIONS: iNO200/20 and iNO200 are equally safe in non-intubated patients with COVID-19-induced respiratory failure with regards to MetHb and NO2. Larger studies should investigate whether iNO200/20 leads to better outcomes compared to non-iNO treated patients.

4.
Am J Respir Crit Care Med ; 208(12): 1293-1304, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774011

RESUMO

Rationale: The effects of high-dose inhaled nitric oxide on hypoxemia in coronavirus disease (COVID-19) acute respiratory failure are unknown. Objectives: The primary outcome was the change in arterial oxygenation (PaO2/FiO2) at 48 hours. The secondary outcomes included: time to reach a PaO2/FiO2.300mmHg for at least 24 hours, the proportion of participants with a PaO2/FiO2.300mmHg at 28 days, and survival at 28 and at 90 days. Methods: Mechanically ventilated adults with COVID-19 pneumonia were enrolled in a phase II, multicenter, single-blind, randomized controlled parallel-arm trial. Participants in the intervention arm received inhaled nitric oxide at 80 ppm for 48 hours, compared with the control group receiving usual care (without placebo). Measurements and Main Results: A total of 193 participants were included in the modified intention-to-treat analysis. The mean change in PaO2/FiO2 ratio at 48 hours was 28.3mmHg in the intervention group and 21.4mmHg in the control group (mean difference, 39.1mmHg; 95% credible interval [CrI], 18.1 to 60.3). The mean time to reach a PaO2/FiO2.300mmHg in the interventional group was 8.7 days, compared with 8.4 days for the control group (mean difference, 0.44; 95% CrI, 23.63 to 4.53). At 28 days, the proportion of participants attaining a PaO2/FiO2.300mmHg was 27.7% in the inhaled nitric oxide group and 17.2% in the control subjects (risk ratio, 2.03; 95% CrI, 1.11 to 3.86). Duration of ventilation and mortality at 28 and 90 days did not differ. No serious adverse events were reported. Conclusions: The use of high-dose inhaled nitric oxide resulted in an improvement of PaO2/FiO2 at 48 hours compared with usual care in adults with acute hypoxemic respiratory failure due to COVID-19.


Assuntos
COVID-19 , Insuficiência Respiratória , Adulto , Humanos , Óxido Nítrico/uso terapêutico , COVID-19/complicações , Método Simples-Cego , Insuficiência Respiratória/tratamento farmacológico , Insuficiência Respiratória/etiologia , Respiração Artificial , Administração por Inalação
5.
Transfusion ; 63(9): 1661-1676, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37606376

RESUMO

BACKGROUND: While prior studies of platelet transfusion in critical care have focused on transfusions given, proper analysis of clinical transfusion practice also requires consideration of the decision not to transfuse. STUDY DESIGN AND METHODS: We introduce a new method to assess transfusion practice based on decision time intervals (DTIs). Each patient's intensive care (ICU) stay was segmented into a series of DTIs defined by a time interval following results of a complete blood count (CBC). We studied the presence of 17 clinical factors during each DTI whether transfusion was given or not. We used a generalized linear mixed model to assess the most influential clinical triggers for platelet transfusion. RESULTS: Among 6125 ICU patients treated between October 2016 and October 2021, we analyzed 39,745 DTIs among patients (n = 2921) who had at least one DTI with thrombocytopenia (≤150,000/µL). We found no association between platelet count and two markers of bleeding: drop in hemoglobin and chest tube drainage. We found that the majority of DTIs were associated with no platelet transfusion regardless of the platelet count; that no specific platelet value triggered transfusion; but rather that multiple clinical factors in conjunction with the platelet count influenced the decision to transfuse. DISCUSSION: DTI analysis represents a new method to assess transfusion practice that considers both transfusions given and not given, and that analyzes clinical circumstances present when decisions regarding transfusion are made. The method is easily adapted to blood components other than platelet transfusions and is easily extended to other ICU and other hospital settings.


Assuntos
Transfusão de Sangue , Transfusão de Plaquetas , Humanos , Cuidados Críticos , Plaquetas , Contagem de Plaquetas
6.
Nitric Oxide ; 138-139: 17-25, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37277062

RESUMO

BACKGROUND: Several nitric oxide (NO) generating devices have been developed to deliver NO between 1 part per million (ppm) and 80 ppm. Although inhalation of high-dose NO may exert antimicrobial effects, the feasibility and safety of producing high-dose (more than 100 ppm) NO remains to be established. In the current study, we designed, developed, and tested three high-dose NO generating devices. METHODS: We constructed three NO generating devices: a double spark plug NO generator, a high-pressure single spark plug NO generator, and a gliding arc NO generator. The NO and NO2 concentrations were measured at different gas flows and under various atmospheric pressures. The double spark plug NO generator was designed to deliver gas through an oxygenator and mixing with pure oxygen. The high-pressure and gliding arc NO generators were used to deliver gas through a ventilator into artificial lungs to mimic delivering high-dose NO in the clinical settings. The energy consumption was measured and compared among the three NO generators. RESULTS: The double spark plug NO generator produced 200 ± 2 ppm (mean ± SD) of NO at gas flow of 8 L/min (or 320 ± 3 ppm at gas flow of 5 L/min) with electrode gap of 3 mm. The nitrogen dioxide (NO2) levels were below 3.0 ± 0.1 ppm when mixing with various volumes of pure oxygen. The addition of a second generator increased the delivered NO from 80 (with one spark plug) to 200 ppm. With the high-pressure chamber, the NO concentration reached 407 ± 3 ppm with continuous air flow at 5 L/min when employing the 3 mm electrode gap under 2.0 atmospheric pressure (ATA). When compared to 1 ATA, NO production was increased 22% at 1.5 ATA and 34% at 2 ATA. The NO level was 180 ± 1 ppm when connecting the device to a ventilator with a constant inspiratory airflow of 15 L/min, and NO2 levels were below 1 (0.93 ± 0.02) ppm. The gliding arc NO generator produced up to 180 ± 4 ppm of NO when connecting the device to a ventilator, and the NO2 level was below 1 (0.91 ± 0.02) ppm in all testing conditions. The gliding arc device required more power (in watts) to generate the same concentrations of NO when compared to double spark plug or high-pressure NO generators. CONCLUSIONS: Our results demonstrated that it is feasible to enhance NO production (more than 100 ppm) while maintaining NO2 level relatively low (less than 3 ppm) with the three recently developed NO generating devices. Future studies might include these novel designs to deliver high doses of inhaled NO as an antimicrobial used to treat upper and lower respiratory tract infections.


Assuntos
Óxido Nítrico , Dióxido de Nitrogênio , Terapia Respiratória , Pulmão , Administração por Inalação , Oxigênio
7.
Nitric Oxide ; 136-137: 1-7, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172929

RESUMO

BACKGROUND: Impairment of ventilation and perfusion (V/Q) matching is a common mechanism leading to hypoxemia in patients with acute respiratory failure requiring intensive care unit (ICU) admission. While ventilation has been thoroughly investigated, little progress has been made to monitor pulmonary perfusion at the bedside and treat impaired blood distribution. The study aimed to assess real-time changes in regional pulmonary perfusion in response to a therapeutic intervention. METHODS: Single-center prospective study that enrolled adult patients with ARDS caused by SARS-Cov-2 who were sedated, paralyzed, and mechanically ventilated. The distribution of pulmonary perfusion was assessed through electrical impedance tomography (EIT) after the injection of a 10-ml bolus of hypertonic saline. The therapeutic intervention consisted in the administration of inhaled nitric oxide (iNO), as rescue therapy for refractory hypoxemia. Each patient underwent two 15-min steps at 0 and 20 ppm iNO, respectively. At each step, respiratory, gas exchange, and hemodynamic parameters were recorded, and V/Q distribution was measured, with unchanged ventilatory settings. RESULTS: Ten 65 [56-75] years old patients with moderate (40%) and severe (60%) ARDS were studied 10 [4-20] days after intubation. Gas exchange improved at 20 ppm iNO (PaO2/FiO2 from 86 ± 16 to 110 ± 30 mmHg, p = 0.001; venous admixture from 51 ± 8 to 45 ± 7%, p = 0.0045; dead space from 29 ± 8 to 25 ± 6%, p = 0.008). The respiratory system's elastic properties and ventilation distribution were unaltered by iNO. Hemodynamics did not change after gas initiation (cardiac output 7.6 ± 1.9 vs. 7.7 ± 1.9 L/min, p = 0.66). The EIT pixel perfusion maps showed a variety of patterns of changes in pulmonary blood flow, whose increase positively correlated with PaO2/FiO2 increase (R2 = 0.50, p = 0.049). CONCLUSIONS: The assessment of lung perfusion is feasible at the bedside and blood distribution can be modulated with effects that are visualized in vivo. These findings might lay the foundations for testing new therapies aimed at optimizing the regional perfusion in the lungs.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Circulação Pulmonar , Estudos Prospectivos , Troca Gasosa Pulmonar , COVID-19/complicações , SARS-CoV-2 , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Óxido Nítrico , Hipóxia , Insuficiência Respiratória/tratamento farmacológico , Administração por Inalação
8.
Anesthesiology ; 139(6): 815-826, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37566686

RESUMO

BACKGROUND: Bedside electrical impedance tomography could be useful to visualize evolving pulmonary perfusion distributions when acute respiratory distress syndrome worsens or in response to ventilatory and positional therapies. In experimental acute respiratory distress syndrome, this study evaluated the agreement of electrical impedance tomography and dynamic contrast-enhanced computed tomography perfusion distributions at two injury time points and in response to increased positive end-expiratory pressure (PEEP) and prone position. METHODS: Eleven mechanically ventilated (VT 8 ml · kg-1) Yorkshire pigs (five male, six female) received bronchial hydrochloric acid (3.5 ml · kg-1) to invoke lung injury. Electrical impedance tomography and computed tomography perfusion images were obtained at 2 h (early injury) and 24 h (late injury) after injury in supine position with PEEP 5 and 10 cm H2O. In eight animals, electrical impedance tomography and computed tomography perfusion imaging were also conducted in the prone position. Electrical impedance tomography perfusion (QEIT) and computed tomography perfusion (QCT) values (as percentages of image total) were compared in eight vertical regions across injury stages, levels of PEEP, and body positions using mixed-effects linear regression. The primary outcome was agreement between QEIT and QCT, defined using limits of agreement and Pearson correlation coefficient. RESULTS: Pao2/Fio2 decreased over the course of the experiment (healthy to early injury, -253 [95% CI, -317 to -189]; early to late injury, -88 [95% CI, -151 to -24]). The limits of agreement between QEIT and QCT were -4.66% and 4.73% for the middle 50% quantile of average regional perfusion, and the correlation coefficient was 0.88 (95% CI, 0.86 to 0.90]; P < 0.001). Electrical impedance tomography and computed tomography showed similar perfusion redistributions over injury stages and in response to increased PEEP. QEIT redistributions after positional therapy underestimated QCT in ventral regions and overestimated QCT in dorsal regions. CONCLUSIONS: Electrical impedance tomography closely approximated computed tomography perfusion measures in experimental acute respiratory distress syndrome, in the supine position, over injury progression and with increased PEEP. Further validation is needed to determine the accuracy of electrical impedance tomography in measuring perfusion redistributions after positional changes.


Assuntos
Síndrome do Desconforto Respiratório , Tomografia Computadorizada por Raios X , Masculino , Feminino , Suínos , Animais , Impedância Elétrica , Síndrome do Desconforto Respiratório/terapia , Pulmão , Perfusão , Tomografia/métodos
9.
J Intensive Care Med ; 38(3): 299-306, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35934953

RESUMO

BACKGROUND: Preclinical studies suggest that ketamine stimulates breathing. We investigated whether adding a ketamine infusion at low and high doses to propofol sedation improves inspiratory flow and enhances sedation in spontaneously breathing critically ill patients. METHODS: In this prospective interventional study, twelve intubated, spontaneously breathing patients received ketamine infusions at 5 mcg/kg/min, followed by 10 mcg/kg/min for 1 h each. Airway flow, pressure, and esophageal pressure were recorded during a spontaneous breathing trial (SBT) at baseline, and during the SBT conducted at the end of each ketamine infusion regimen. SBT consisted of one-minute breathing with zero end-expiratory pressure and no pressure support. Changes in inspiratory flow at the pre-specified time points were assessed as the primary outcome. Ketamine-induced change in beta-gamma electroencephalogram power was the key secondary endpoint. We also analyzed changes in other ventilatory parameters respiratory timing, and resistive and elastic inspiratory work of breathing. RESULTS: Ketamine infusion of 5 and 10 mcg/kg/min increased inspiratory flow (median, IQR) from 0.36 (0.29-0.46) L/s at baseline to 0.47 (0.32-0.57) L/s and 0.44 (0.33-0.58) L/s, respectively (p = .013). Resistive work of breathing decreased from 0.4 (0.1-0.6) J/l at baseline to 0.2 (0.1-0.3) J/l after ketamine 10 mcg/kg/min (p = .042), while elastic work of breathing remained unchanged. Electroencephalogram beta-gamma power (19-44 Hz) increased compared to baseline (p < .01). CONCLUSIONS: In intubated, spontaneously breathing patients receiving a constant rate of propofol, ketamine increased inspiratory flow, reduced inspiratory work of breathing, and was associated with an "activated" electroencephalographic pattern. These characteristics might facilitate weaning from mechanical ventilation.


Assuntos
Ketamina , Propofol , Humanos , Estudos Prospectivos , Respiração Artificial , Desmame do Respirador , Trabalho Respiratório , Unidades de Terapia Intensiva
10.
Eur J Anaesthesiol ; 40(11): 805-816, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37789753

RESUMO

BACKGROUND: A protective intra-operative lung ventilation strategy has been widely recommended for laparoscopic surgery. However, there is no consensus regarding the optimal level of positive end-expiratory pressure (PEEP) and its effects during pneumoperitoneum. Electrical impedance tomography (EIT) has recently been introduced as a bedside tool to monitor lung ventilation in real-time. OBJECTIVE: We hypothesised that individually titrated EIT-PEEP adjusted to the surgical intervention would improve respiratory mechanics during and after surgery. DESIGN: Randomised controlled trial. SETTING: First Medical Centre of Chinese PLA General Hospital, Beijing. PATIENTS: Seventy-five patients undergoing robotic-assisted laparoscopic hepatobiliary and pancreatic surgery under general anaesthesia. INTERVENTIONS: Patients were randomly assigned 2 : 1 to individualised EIT-titrated PEEP (PEEPEIT; n = 50) or traditional PEEP 5 cmH2O (PEEP5 cmH2O; n = 25). The PEEPEIT group received individually titrated EIT-PEEP during pneumoperitoneum. The PEEP5 cmH2O group received PEEP of 5 cmH2O during pneumoperitoneum. MAIN OUTCOME MEASURES: The primary outcome was respiratory system compliance during laparoscopic surgery. Secondary outcomes were individualised PEEP levels, oxygenation, respiratory and haemodynamic status, and occurrence of postoperative pulmonary complications (PPCs) within 7 days. RESULTS: Compared with PEEP5 cmH2O, patients who received PEEPEIT had higher respiratory system compliance (mean values during surgery of 44.3 ±â€Š11.3 vs. 31.9 ±â€Š6.6, ml cmH2O-1; P < 0.001), lower driving pressure (11.5 ±â€Š2.1 vs. 14.0 ±â€Š2.4 cmH2O; P < 0.001), better oxygenation (mean PaO2/FiO2 427.5 ±â€Š28.6 vs. 366.8 ±â€Š36.4; P = 0.003), and less postoperative atelectasis (19.4 ±â€Š1.6 vs. 46.3 ±â€Š14.8 g of lung tissue mass; P = 0.003). Haemodynamic values did not differ significantly between the groups. No adverse effects were observed during surgery. CONCLUSION: Individualised PEEP by EIT may improve intra-operative pulmonary mechanics and oxygenation without impairing haemodynamic stability, and decrease postoperative atelectasis. TRIAL REGISTRATION: Chinese Clinical Trial Registry (www.chictr.org.cn) identifier: ChiCTR2100045166.


Assuntos
Pneumoperitônio , Atelectasia Pulmonar , Humanos , Impedância Elétrica , Pneumoperitônio/etiologia , Pulmão/diagnóstico por imagem , Respiração com Pressão Positiva/métodos , Atelectasia Pulmonar/etiologia , Atelectasia Pulmonar/prevenção & controle , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Tomografia/métodos
11.
Nitric Oxide ; 121: 20-33, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35123061

RESUMO

Inhaled nitric oxide (iNO) acts as a selective pulmonary vasodilator and it is currently approved by the FDA for the treatment of persistent pulmonary hypertension of the newborn. iNO has been demonstrated to effectively decrease pulmonary artery pressure and improve oxygenation, while decreasing extracorporeal life support use in hypoxic newborns affected by persistent pulmonary hypertension. Also, iNO seems a safe treatment with limited side effects. Despite the promising beneficial effects of NO in the preclinical literature, there is still a lack of high quality evidence for the use of iNO in clinical settings. A variety of clinical applications have been suggested in and out of the critical care environment, aiming to use iNO in respiratory failure and pulmonary hypertension of adults or as a preventative measure of hemolysis-induced vasoconstriction, ischemia/reperfusion injury and as a potential treatment of renal failure associated with cardiopulmonary bypass. In this narrative review we aim to present a comprehensive summary of the potential use of iNO in several clinical conditions with its suggested benefits, including its recent application in the scenario of the COVID-19 pandemic. Randomized controlled trials, meta-analyses, guidelines, observational studies and case-series were reported and the main findings summarized. Furthermore, we will describe the toxicity profile of NO and discuss an innovative proposed strategy to produce iNO. Overall, iNO exhibits a wide range of potential clinical benefits, that certainly warrants further efforts with randomized clinical trials to determine specific therapeutic roles of iNO.


Assuntos
Estado Terminal , Hipertensão Pulmonar/tratamento farmacológico , Doenças do Recém-Nascido/tratamento farmacológico , Óxido Nítrico/uso terapêutico , Vasodilatadores/uso terapêutico , Adulto , COVID-19/complicações , COVID-19/virologia , Humanos , Hipertensão Pulmonar/etiologia , Recém-Nascido , Doenças do Recém-Nascido/etiologia , Óxido Nítrico/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , Vasodilatadores/farmacologia , Tratamento Farmacológico da COVID-19
12.
Curr Opin Crit Care ; 28(3): 292-301, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35482002

RESUMO

PURPOSE OF REVIEW: Electrical impedance tomography (EIT) is a novel, noninvasive, radiation-free, bedside imaging and monitoring tool to assess and visualize regional distribution of lung ventilation and perfusion. Although primarily a research tool, rapidly emerging data are beginning to define its clinical role, and it is poised to become a ubiquitous addition to the arsenal of the intensive care unit (ICU). In this review, we summarize the data supporting clinical use of EIT in adult ICUs, with an emphasis on appropriate application while highlighting future directions. RECENT FINDINGS: Recent major studies have primarily focused on the role of EIT in setting correct positive end-expiratory pressure to balance regional overdistention and collapse. Over the last few years, our Lung Rescue Team has demonstrated that incorporating EIT into a multimodal approach to individualizing ventilator management can improve outcomes, particularly in the obese. We also review recent data surrounding EIT use during COVID, as well as other broad potential applications. SUMMARY: As EIT becomes more common and its clinical role more defined, intensivists will benefit from a clear understanding of its applications and limitations.


Assuntos
COVID-19 , Tomografia , Adulto , Impedância Elétrica , Humanos , Unidades de Terapia Intensiva , Monitorização Fisiológica/métodos , Tomografia/métodos
13.
Curr Opin Crit Care ; 28(1): 74-82, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34932525

RESUMO

PURPOSE OF REVIEW: We conducted a systematic literature review to summarize the available evidence regarding the incidence, risk factors, and clinical characteristics of ventilator-associated pneumonia (VAP) in patients undergoing mechanical ventilation because of acute respiratory distress syndrome secondary to SARS-CoV-2 infection (C-ARDS). RECENT FINDINGS: Sixteen studies (6484 patients) were identified. Bacterial coinfection was uncommon at baseline (<15%) but a high proportion of patients developed positive bacterial cultures thereafter leading to a VAP diagnosis (range 21-64%, weighted average 50%). Diagnostic criteria varied between studies but most signs of VAP have substantial overlap with the signs of C-ARDS making it difficult to differentiate between bacterial colonization versus superinfection. Most episodes of VAP were associated with Gram-negative bacteria. Occasional cases were also attributed to herpes virus reactivations and pulmonary aspergillosis. Potential factors driving high VAP incidence rates include immunoparalysis, prolonged ventilation, exposure to immunosuppressants, understaffing, lapses in prevention processes, and overdiagnosis. SUMMARY: Covid-19 patients who require mechanical ventilation for ARDS have a high risk (>50%) of developing VAP, most commonly because of Gram-negative bacteria. Further work is needed to elucidate the disease-specific risk factors for VAP, strategies for prevention, and how best to differentiate between bacterial colonization versus superinfection.


Assuntos
COVID-19 , Pneumonia Associada à Ventilação Mecânica , Síndrome do Desconforto Respiratório , Humanos , Sobrediagnóstico , Pneumonia Associada à Ventilação Mecânica/epidemiologia , Respiração Artificial , Síndrome do Desconforto Respiratório/epidemiologia , Síndrome do Desconforto Respiratório/etiologia , SARS-CoV-2
14.
Semin Respir Crit Care Med ; 43(3): 440-452, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35533689

RESUMO

The administration of exogenous oxygen to support adequate gas exchange is the cornerstone of respiratory care. In the past few years, other gaseous molecules have been introduced in clinical practice to treat the wide variety of physiological derangement seen in critical care patients.Inhaled nitric oxide (NO) is used for its unique selective pulmonary vasodilator effect. Recent studies showed that NO plays a pivotal role in regulating ischemia-reperfusion injury and it has antibacterial and antiviral activity.Helium, due to its low density, is used in patients with upper airway obstruction and lower airway obstruction to facilitate gas flow and to reduce work of breathing.Carbon monoxide (CO) is a poisonous gas that acts as a signaling molecule involved in many biologic pathways. CO's anti-inflammatory and antiproliferative effects are under investigation in the setting of acute respiratory distress and idiopathic pulmonary fibrosis.Inhaled anesthetics are widely used in the operative room setting and, with the development of anesthetic reflectors, are now a valid option for sedation management in the intensive care unit.Many other gases such as xenon, argon, and hydrogen sulfide are under investigation for their neuroprotective and cardioprotective effects in post-cardiac arrest syndrome.With all these therapeutic options available, the clinician must have a clear understanding of the physiologic basis, therapeutic potential, and possible adverse events of these therapeutic gases. In this review, we will present the therapeutic gases other than oxygen used in clinical practice and we will describe other promising therapeutic gases that are in the early phases of investigation.


Assuntos
Obstrução das Vias Respiratórias , Anestésicos , Estado Terminal/terapia , Hélio/uso terapêutico , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico/uso terapêutico , Oxigênio
15.
Arch Toxicol ; 96(12): 3363-3371, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36195745

RESUMO

Electronic cigarettes (e-cigarettes) have been used widely as an alternative to conventional cigarettes and have become particularly popular among young adults. A growing body of evidence has shown that e-cigarettes are associated with acute lung injury and adverse effects in multiple other organs. Previous studies showed that high emissions of aldehydes (formaldehyde and acetaldehyde) in aerosols were associated with increased usage of the same e-cigarette coils. However, the impact on lung function of using aged coils has not been reported. We investigated the relationship between coil age and acute lung injury in mice exposed to experimental vaping for 1 h (2 puffs/min, 100 ml/puff). The e-liquid contains propylene glycol and vegetable glycerin (50:50, vol) only. The concentrations of formaldehyde and acetaldehyde in the vaping aerosols increased with age of the nichrome coils starting at 1200 puffs. Mice exposed to e-cigarette aerosols produced from 1800, but not 0 or 900, puff-aged coils caused acute lung injury, increased lung wet/dry weight ratio, and induced lung inflammation (IL-6, TNF-α, IL-1ß, MIP-2). Exposure to vaping aerosols from 1800 puff-aged coils decreased heart rate, respiratory rate, and oxygen saturation in mice compared to mice exposed to air or aerosols from new coils. In conclusion, we observed that the concentration of aldehydes (formaldehyde and acetaldehyde) increased with repeated and prolonged usage of e-cigarette coils. Exposure to high levels of aldehyde in vaping aerosol was associated with acute lung injury in mice. These findings show significant risk of lung injury associated with prolonged use of e-cigarette devices.


Assuntos
Lesão Pulmonar Aguda , Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Animais , Camundongos , Acetaldeído , Lesão Pulmonar Aguda/induzido quimicamente , Aldeídos/toxicidade , Formaldeído/toxicidade , Glicerol , Interleucina-6 , Propilenoglicol/toxicidade , Aerossóis e Gotículas Respiratórios , Fator de Necrose Tumoral alfa
16.
Am J Respir Crit Care Med ; 203(5): 575-584, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876469

RESUMO

Rationale: Obesity is characterized by elevated pleural pressure (Ppl) and worsening atelectasis during mechanical ventilation in patients with acute respiratory distress syndrome (ARDS).Objectives: To determine the effects of a lung recruitment maneuver (LRM) in the presence of elevated Ppl on hemodynamics, left and right ventricular pressure, and pulmonary vascular resistance. We hypothesized that elevated Ppl protects the cardiovascular system against high airway pressure and prevents lung overdistension.Methods: First, an interventional crossover trial in adult subjects with ARDS and a body mass index ≥ 35 kg/m2 (n = 21) was performed to explore the hemodynamic consequences of the LRM. Second, cardiovascular function was studied during low and high positive end-expiratory pressure (PEEP) in a model of swine with ARDS and high Ppl (n = 9) versus healthy swine with normal Ppl (n = 6).Measurements and Main Results: Subjects with ARDS and obesity (body mass index = 57 ± 12 kg/m2) after LRM required an increase in PEEP of 8 (95% confidence interval [95% CI], 7-10) cm H2O above traditional ARDS Network settings to improve lung function, oxygenation and [Formula: see text]/[Formula: see text] matching, without impairment of hemodynamics or right heart function. ARDS swine with high Ppl demonstrated unchanged transmural left ventricular pressure and systemic blood pressure after the LRM protocol. Pulmonary arterial hypertension decreased (8 [95% CI, 13-4] mm Hg), as did vascular resistance (1.5 [95% CI, 2.2-0.9] Wood units) and transmural right ventricular pressure (10 [95% CI, 15-6] mm Hg) during exhalation. LRM and PEEP decreased pulmonary vascular resistance and normalized the [Formula: see text]/[Formula: see text] ratio.Conclusions: High airway pressure is required to recruit lung atelectasis in patients with ARDS and class III obesity but causes minimal overdistension. In addition, patients with ARDS and class III obesity hemodynamically tolerate LRM with high airway pressure.Clinical trial registered with www.clinicaltrials.gov (NCT02503241).


Assuntos
Atelectasia Pulmonar , Síndrome do Desconforto Respiratório , Choque , Animais , Hemodinâmica/fisiologia , Humanos , Obesidade/complicações , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/terapia , Suínos
17.
Am J Emerg Med ; 58: 5-8, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35623183

RESUMO

BACKGROUND: Inhaled nitric oxide (iNO) is a selective pulmonary vasodilator and mild bronchodilator that has been shown to improve systemic oxygenation, but has rarely been administered in the Emergency Department (ED). In addition to its favorable pulmonary vascular effects, in-vitro studies report that NO donors can inhibit replication of viruses, including SARS Coronavirus 2 (SARS-CoV-2). This study evaluated the administration of high-dose iNO by mask in spontaneously breathing emergency department (ED) patients with respiratory symptoms attributed to Coronavirus disease 2019 (COVID-19). METHODS: We designed a randomized clinical trial to determine whether 30 min of high dose iNO (250 ppm) could be safely and practically administered by emergency physicians in the ED to spontaneously-breathing patients with respiratory symptoms attributed to COVID-19. Our secondary goal was to learn if iNO could prevent the progression of mild COVID-19 to a more severe state. FINDINGS: We enrolled 47 ED patients with acute respiratory symptoms most likely due to COVID-19: 25 of 47 (53%) were randomized to the iNO treatment group; 22 of 47 (46%) to the control group (supportive care only). All patients tolerated the administration of high-dose iNO in the ED without significant complications or symptoms. Five patients receiving iNO (16%) experienced asymptomatic methemoglobinemia (MetHb) > 5%. Thirty-four of 47 (72%) subjects tested positive for SARS-CoV-2: 19 of 34 were randomized to the iNO treatment group and 15 of 34 subjects to the control group. Seven of 19 (38%) iNO patients returned to the ED, while 4 of 15 (27%) control patients did. One patient in each study arm was hospitalized: 5% in iNO treatment and 7% in controls. One patient was intubated in the iNO group. No patients in either group died. The differences between these groups were not significant. CONCLUSION: A single dose of iNO at 250 ppm was practical and not associated with any significant adverse effects when administered in the ED by emergency physicians. Local disease control led to early study closure and prevented complete testing of COVID-19 safety and treatment outcomes measures.


Assuntos
COVID-19 , Insuficiência Respiratória , Administração por Inalação , Serviço Hospitalar de Emergência , Humanos , Óxido Nítrico/uso terapêutico , Insuficiência Respiratória/terapia , SARS-CoV-2
18.
Crit Care Med ; 49(10): e1015-e1024, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33938714

RESUMO

OBJECTIVES: It is not known how lung injury progression during mechanical ventilation modifies pulmonary responses to prone positioning. We compared the effects of prone positioning on regional lung aeration in late versus early stages of lung injury. DESIGN: Prospective, longitudinal imaging study. SETTING: Research imaging facility at The University of Pennsylvania (Philadelphia, PA) and Medical and Surgical ICUs at Massachusetts General Hospital (Boston, MA). SUBJECTS: Anesthetized swine and patients with acute respiratory distress syndrome (acute respiratory distress syndrome). INTERVENTIONS: Lung injury was induced by bronchial hydrochloric acid (3.5 mL/kg) in 10 ventilated Yorkshire pigs and worsened by supine nonprotective ventilation for 24 hours. Whole-lung CT was performed 2 hours after hydrochloric acid (Day 1) in both prone and supine positions and repeated at 24 hours (Day 2). Prone and supine images were registered (superimposed) in pairs to measure the effects of positioning on the aeration of each tissue unit. Two patients with early acute respiratory distress syndrome were compared with two patients with late acute respiratory distress syndrome, using electrical impedance tomography to measure the effects of body position on regional lung mechanics. MEASUREMENTS AND MAIN RESULTS: Gas exchange and respiratory mechanics worsened over 24 hours, indicating lung injury progression. On Day 1, prone positioning reinflated 18.9% ± 5.2% of lung mass in the posterior lung regions. On Day 2, position-associated dorsal reinflation was reduced to 7.3% ± 1.5% (p < 0.05 vs Day 1). Prone positioning decreased aeration in the anterior lungs on both days. Although prone positioning improved posterior lung compliance in the early acute respiratory distress syndrome patients, it had no effect in late acute respiratory distress syndrome subjects. CONCLUSIONS: The effects of prone positioning on lung aeration may depend on the stage of lung injury and duration of prior ventilation; this may limit the clinical efficacy of this treatment if applied late.


Assuntos
Lesão Pulmonar/complicações , Decúbito Ventral/fisiologia , Adulto , Idoso , Boston , Feminino , Humanos , Estudos Longitudinais , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/fisiopatologia , Masculino , Pessoa de Meia-Idade , Pennsylvania , Respiração com Pressão Positiva/métodos , Estudos Prospectivos , Resultado do Tratamento
19.
Nitric Oxide ; 116: 7-13, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400339

RESUMO

BACKGROUND: Inhaled nitric oxide (NO) is a selective pulmonary vasodilator. In-vitro studies report that NO donors can inhibit replication of SARS-CoV-2. This multicenter study evaluated the feasibility and effects of high-dose inhaled NO in non-intubated spontaneously breathing patients with Coronavirus disease-2019 (COVID-19). METHODS: This is an interventional study to determine whether NO at 160 parts-per-million (ppm) inhaled for 30 min twice daily might be beneficial and safe in non-intubated COVID-19 patients. RESULTS: Twenty-nine COVID-19 patients received a total of 217 intermittent inhaled NO treatments for 30 min at 160 ppm between March and June 2020. Breathing NO acutely decreased the respiratory rate of tachypneic patients and improved oxygenation in hypoxemic patients. The maximum level of nitrogen dioxide delivered was 1.5 ppm. The maximum level of methemoglobin (MetHb) during the treatments was 4.7%. MetHb decreased in all patients 5 min after discontinuing NO administration. No adverse events during treatment, such as hypoxemia, hypotension, or acute kidney injury during hospitalization occurred. In our NO treated patients, one patient of 29 underwent intubation and mechanical ventilation, and none died. The median hospital length of stay was 6 days [interquartile range 4-8]. No discharged patients required hospital readmission nor developed COVID-19 related long-term sequelae within 28 days of follow-up. CONCLUSIONS: In spontaneous breathing patients with COVID-19, the administration of inhaled NO at 160 ppm for 30 min twice daily promptly improved the respiratory rate of tachypneic patients and systemic oxygenation of hypoxemic patients. No adverse events were observed. None of the subjects was readmitted or had long-term COVID-19 sequelae.


Assuntos
Tratamento Farmacológico da COVID-19 , Hospitalização , Óxido Nítrico/administração & dosagem , Pneumonia Viral/tratamento farmacológico , Respiração/efeitos dos fármacos , Administração por Inalação , COVID-19/complicações , COVID-19/virologia , Relação Dose-Resposta a Droga , Humanos , Óxido Nítrico/farmacologia , Óxido Nítrico/uso terapêutico , Pneumonia Viral/complicações
20.
Curr Opin Crit Care ; 27(3): 311-319, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33797429

RESUMO

PURPOSE OF REVIEW: Obesity prevalence is increasing in most countries in the world. In the United States, 42% of the population is obese (body mass index (BMI) > 30) and 9.2% is obese class III (BMI > 40). One of the greatest challenges in critically ill patients with obesity is the optimization of mechanical ventilation. The goal of this review is to describe respiratory physiologic changes in patients with obesity and discuss possible mechanical ventilation strategies to improve respiratory function. RECENT FINDINGS: Individualized mechanical ventilation based on respiratory physiology after a decremental positive end-expiratory pressure (PEEP) trial improves oxygenation and respiratory mechanics. In a recent study, mortality of patients with respiratory failure and obesity was reduced by about 50% when mechanical ventilation was associated with the use of esophageal manometry and electrical impedance tomography (EIT). SUMMARY: Obesity greatly alters the respiratory system mechanics causing atelectasis and prolonged duration of mechanical ventilation. At present, novel strategies to ventilate patients with obesity based on individual respiratory physiology showed to be superior to those based on standard universal tables of mechanical ventilation. Esophageal manometry and EIT are essential tools to systematically assess respiratory system mechanics, safely adjust relatively high levels of PEEP, and improve chances for successful weaning.


Assuntos
Respiração com Pressão Positiva , Atelectasia Pulmonar , Impedância Elétrica , Humanos , Obesidade/complicações , Obesidade/terapia , Respiração Artificial/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA