Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Neurooncol ; 152(3): 491-499, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33624261

RESUMO

PURPOSE: Myxopapillary ependymoma (MPE) is the most frequent tumor affecting the medullary conus. The surgical therapeutic management is still debated and only few studies have focused on the postoperative clinical outcome of patients. This study aimed to demonstrate long-term postoperative outcome and to assess the predictive factors of recurrence as well as the clinical evolution of these patients. METHODS: From 1984 to 2019, in four French centers, 101 adult patients diagnosed with MPE were retrospectively included. RESULTS: Median age at surgery was 39 years. Median tumor size was 50 mm and lesions were multifocal in 13% of patients. All patients benefited from surgery and one patient received postoperative radiotherapy. Gross total resection was obtained in 75% of cases. Sixteen percent of patients presented recurrence after a median follow-up of 70 months. Progression free survival at 5 and 10 years were respectively estimated at 83% and 79%. After multivariable analysis, sacral localization, and subtotal resection were shown to be independently associated with tumor recurrence. 85% of the patients had a favorable evolution concerning pain. 12% of the patients presented a postoperative deterioration of sphincter function and 4% of motor function. CONCLUSION: Surgery alone is an acceptable option for MPE patients. Patients with sacral location or incomplete resection are at high risk of recurrence and should be carefully monitored.


Assuntos
Ependimoma , Neoplasias da Medula Espinal , Ependimoma/cirurgia , Humanos , Estudos Retrospectivos , Neoplasias da Medula Espinal/cirurgia , Resultado do Tratamento
2.
Nat Neurosci ; 26(6): 942-954, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37231108

RESUMO

Microglial cells are the major immune cells of the central nervous system (CNS), and directly react to neurodegeneration, but other immune cell types are also able to react to pathology and can modify the course of neurodegenerative processes. These mainly include monocytes/macrophages and lymphocytes. While these peripheral immune cells were initially considered to act only after infiltrating the CNS, recent evidence suggests that some of them can also act directly from the periphery. We will review the existing and emerging evidence for a role of peripheral immune cells in neurodegenerative diseases, both with and without CNS infiltration. Our focus will be on amyotrophic lateral sclerosis, but we will also compare to Alzheimer's disease and Parkinson's disease to highlight similarities or differences. Peripheral immune cells are easily accessible, and therefore may be an attractive therapeutic target for neurodegenerative diseases. Thus, understanding how these peripheral immune cells communicate with the CNS deserves deeper investigation.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Sistema Nervoso Central , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/patologia , Esclerose Lateral Amiotrófica/patologia , Leucócitos/metabolismo
3.
Neurobiol Aging ; 101: 181-186, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33626479

RESUMO

Neuroinflammation is a hallmark of Amyotrophic Lateral Sclerosis (ALS) in hSOD1G93A mouse models where microglial cells contribute to the progressive motor neuron degenerative process. S100-A8 and S100-A9 (also known as MRP8 and MRP14, respectively) are cytoplasmic proteins expressed by inflammatory myeloid cells, including microglia and macrophages. Mainly acting as a heterodimer, S100-A8/A9, when secreted, can activate Toll-like Receptor 4 on immune cells, leading to deleterious proinflammatory cytokine production. Deletion of S100a9 in Alzheimer's disease mouse models showed a positive outcome, reducing pathology. We now assessed its role in ALS. Unexpectedly, our results show that deleting S100a9 in hSOD1G93A ALS mice had no impact on mouse survival, but rather accelerated symptoms with no impact on microglial activation and motor neuron survival, suggesting that blocking S100-A9 would not be a valuable strategy for ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/mortalidade , Calgranulina B/genética , Deleção de Genes , Histona-Lisina N-Metiltransferase , Superóxido Dismutase-1 , Animais , Calgranulina B/metabolismo , Modelos Animais de Doenças , Histona-Lisina N-Metiltransferase/metabolismo , Inflamação , Camundongos , Microglia/metabolismo , Superóxido Dismutase-1/metabolismo , Sobrevida
4.
Nat Neurosci ; 23(11): 1339-1351, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33077946

RESUMO

Microglia and peripheral macrophages have both been implicated in amyotrophic lateral sclerosis (ALS), although their respective roles have yet to be determined. We now show that macrophages along peripheral motor neuron axons in mouse models and patients with ALS react to neurodegeneration. In ALS mice, peripheral myeloid cell infiltration into the spinal cord was limited and depended on disease duration. Targeted gene modulation of the reactive oxygen species pathway in peripheral myeloid cells of ALS mice, using cell replacement, reduced both peripheral macrophage and microglial activation, delayed symptoms and increased survival. Transcriptomics revealed that sciatic nerve macrophages and microglia reacted differently to neurodegeneration, with abrupt temporal changes in macrophages and progressive, unidirectional activation in microglia. Modifying peripheral macrophages suppressed proinflammatory microglial responses, with a shift toward neuronal support. Thus, modifying macrophages at the periphery has the capacity to influence disease progression and may be of therapeutic value for ALS.


Assuntos
Esclerose Lateral Amiotrófica/imunologia , Axônios/imunologia , Macrófagos/imunologia , Microglia/imunologia , Neurônios Motores/imunologia , Nervo Isquiático/imunologia , Adulto , Idoso , Esclerose Lateral Amiotrófica/metabolismo , Animais , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Nervo Isquiático/metabolismo , Medula Espinal/imunologia , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA