Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(8): e18306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613357

RESUMO

Topical patch delivery of deferoxamine (DFO) has been studied as a treatment for this fibrotic transformation in irradiated tissue. Efficacy of a novel cream formulation of DFO was studied as a RIF therapeutic in unwounded and excisionally wounded irradiated skin. C57BL/6J mice underwent 30 Gy of radiation to the dorsum followed by 4 weeks of recovery. In a first experiment, mice were separated into six conditions: DFO 50 mg cream (D50), DFO 100 mg cream (D100), soluble DFO injections (DI), DFO 1 mg patch (DP), control cream (Vehicle), and irradiated untreated skin (IR). In a second experiment, excisional wounds were created on the irradiated dorsum of mice and then divided into four treatment groups: DFO 100 mg Cream (W-D100), DFO 1 mg patch (W-DP), control cream (W-Vehicle), and irradiated untreated wounds (W-IR). Laser Doppler perfusion scans, biomechanical testing, and histological analysis were performed. In irradiated skin, D100 improved perfusion compared to D50 or DP. Both D100 and DP enhanced dermal characteristics, including thickness, collagen density and 8-isoprostane staining compared to untreated irradiated skin. D100 outperformed DP in CD31 staining, indicating higher vascular density. Extracellular matrix features of D100 and DP resembled normal skin more closely than DI or control. In radiated excisional wounds, D100 facilitated faster wound healing and increased perfusion compared to DP. The 100 mg DFO cream formulation rescued RIF of unwounded irradiated skin and improved excisional wound healing in murine skin relative to patch delivery of DFO.


Assuntos
Desferroxamina , Síndrome da Fibrose por Radiação , Camundongos , Animais , Camundongos Endogâmicos C57BL , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Pele , Perfusão
2.
J Transl Med ; 22(1): 68, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233920

RESUMO

Local skin flaps are frequently employed for wound closure to address surgical, traumatic, congenital, or oncologic defects. (1) Despite their clinical utility, skin flaps may fail due to inadequate perfusion, ischemia/reperfusion injury (IRI), excessive cell death, and associated inflammatory response. (2) All of these factors contribute to skin flap necrosis in 10-15% of cases and represent a significant surgical challenge. (3, 4) Once flap necrosis occurs, it may require additional surgeries to remove the entire flap or repair the damage and secondary treatments for infection and disfiguration, which can be costly and painful. (5) In addition to employing appropriate surgical techniques and identifying healthy, well-vascularized tissue to mitigate the occurrence of these complications, there is growing interest in exploring cell-based and pharmacologic augmentation options. (6) These agents typically focus on preventing thrombosis and increasing vasodilation and angiogenesis while reducing inflammation and oxidative stress. Agents that modulate cell death pathways such as apoptosis and autophagy have also been investigated. (7) Implementation of drugs and cell lines with potentially beneficial properties have been proposed through various delivery techniques including systemic treatment, direct wound bed or flap injection, and topical application. This review summarizes pharmacologic- and cell-based interventions to augment skin flap viability in animal models, and discusses both translatability challenges facing these therapies and future directions in the field of skin flap augmentation.


Assuntos
Traumatismo por Reperfusão , Retalhos Cirúrgicos , Animais , Pele , Complicações Pós-Operatórias , Modelos Animais de Doenças , Necrose/tratamento farmacológico
3.
Ann Plast Surg ; 92(2): 181-185, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962260

RESUMO

ABSTRACT: The number of cancer survivors continues to increase because of advances in therapeutic modalities. Along with surgery and chemotherapy, radiotherapy is a commonly used treatment modality in roughly half of all cancer patients. It is particularly helpful in the oncologic treatment of patients with breast, head and neck, and prostate malignancies. Unfortunately, among patients receiving radiation therapy, long-term sequalae are often unavoidable, and there is accumulating clinical evidence suggesting significant radiation-related damage to the vascular endothelium. Ionizing radiation has been known to cause obliterative fibrosis and increased wall thickness in irradiated blood vessels. Clinically, these vascular changes induced by ionizing radiation can pose unique surgical challenges when operating in radiated fields. Here, we review the relevant literature on radiation-induced vascular damage focusing on mechanisms and signaling pathways involved and highlight microsurgical anastomotic outcomes after radiotherapy. In addition, we briefly comment on potential therapeutic strategies, which may have the ability to mitigate radiation injury to the vascular endothelium.


Assuntos
Neoplasias , Lesões por Radiação , Lesões do Sistema Vascular , Masculino , Humanos , Lesões do Sistema Vascular/etiologia , Lesões por Radiação/etiologia , Neoplasias/complicações , Endotélio Vascular , Mama/patologia , Radioterapia/efeitos adversos
4.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542247

RESUMO

Throughout history, natural products have played a significant role in wound healing. Fibroblasts, acting as primary cellular mediators in skin wound healing, exhibit behavioral responses to natural compounds that can enhance the wound healing process. Identifying bioactive natural compounds and understanding their impact on fibroblast behavior offers crucial translational opportunities in the realm of wound healing. Modern scientific techniques have enabled a detailed understanding of how naturally derived compounds modulate wound healing by influencing fibroblast behavior. Specific compounds known for their wound healing properties have been identified. Engineered biomimetic compounds replicating the natural wound microenvironment are designed to facilitate normal healing. Advanced delivery methods operating at micro- and nano-scales have been developed to effectively deliver these novel compounds through the stratum corneum. This review provides a comprehensive summary of the efficacy of natural compounds in influencing fibroblast behavior for promoting wound regeneration and repair. Additionally, it explores biomimetic engineering, where researchers draw inspiration from nature to create materials and devices mimicking physiological cues crucial for effective wound healing. The review concludes by describing novel delivery mechanisms aimed at enhancing the bioavailability of natural compounds. Innovative future strategies involve exploring fibroblast-influencing pathways, responsive biomaterials, smart dressings with real-time monitoring, and applications of stem cells. However, translating these findings to clinical settings faces challenges such as the limited validation of biomaterials in large animal models and logistical obstacles in industrial production. The integration of ancient remedies with modern approaches holds promise for achieving effective and scar-free wound healing.


Assuntos
Biomimética , Cicatrização , Animais , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Cicatriz/patologia , Fibroblastos , Pele/patologia
5.
J Reconstr Microsurg ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38382637

RESUMO

BACKGROUND: With the growing relevance of artificial intelligence (AI)-based patient-facing information, microsurgical-specific online information provided by professional organizations was compared with that of ChatGPT (Chat Generative Pre-Trained Transformer) and assessed for accuracy, comprehensiveness, clarity, and readability. METHODS: Six plastic and reconstructive surgeons blindly assessed responses to 10 microsurgery-related medical questions written either by the American Society of Reconstructive Microsurgery (ASRM) or ChatGPT based on accuracy, comprehensiveness, and clarity. Surgeons were asked to choose which source provided the overall highest-quality microsurgical patient-facing information. Additionally, 30 individuals with no medical background (ages: 18-81, µ = 49.8) were asked to determine a preference when blindly comparing materials. Readability scores were calculated, and all numerical scores were analyzed using the following six reliability formulas: Flesch-Kincaid Grade Level, Flesch-Kincaid Readability Ease, Gunning Fog Index, Simple Measure of Gobbledygook Index, Coleman-Liau Index, Linsear Write Formula, and Automated Readability Index. Statistical analysis of microsurgical-specific online sources was conducted utilizing paired t-tests. RESULTS: Statistically significant differences in comprehensiveness and clarity were seen in favor of ChatGPT. Surgeons, 70.7% of the time, blindly choose ChatGPT as the source that overall provided the highest-quality microsurgical patient-facing information. Nonmedical individuals 55.9% of the time selected AI-generated microsurgical materials as well. Neither ChatGPT nor ASRM-generated materials were found to contain inaccuracies. Readability scores for both ChatGPT and ASRM materials were found to exceed recommended levels for patient proficiency across six readability formulas, with AI-based material scored as more complex. CONCLUSION: AI-generated patient-facing materials were preferred by surgeons in terms of comprehensiveness and clarity when blindly compared with online material provided by ASRM. Studied AI-generated material was not found to contain inaccuracies. Additionally, surgeons and nonmedical individuals consistently indicated an overall preference for AI-generated material. A readability analysis suggested that both materials sourced from ChatGPT and ASRM surpassed recommended reading levels across six readability scores.

6.
Wound Repair Regen ; 31(1): 77-86, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484112

RESUMO

Wound dehiscence, oftentimes a result of the poor tensile strength of early healing wounds, is a significant threat to the post-operative patient, potentially causing life-threatening complications. Vanadate, a protein tyrosine phosphatase inhibitor, has been shown to alter the organisation of deposited collagen in healing wounds and significantly improve the tensile strength of incisional wounds in rats. In this study, we sought to explore the effects of locally administered vanadate on tensile strength and collagen organisation in both the early and remodelling phases of excisional wound healing in a murine model. Wild-type mice underwent stented excisional wounding on their dorsal skin and were divided equally into three treatment conditions: vanadate injection, saline injection control and an untreated control. Tensile strength testing, in vivo suction Cutometer analysis, gross wound measurements and histologic analysis were performed during healing, immediately upon wound closure, and after 4 weeks of remodelling. We found that vanadate treatment significantly increased the tensile strength of wounds and their stiffness relative to control wounds, both immediately upon healing and into the remodelling phase. Histologic analysis revealed that these biomechanical changes were likely the result of increased collagen deposition and an altered collagen organisation composed of thicker and distinctly organised collagen bundles. Given the risk that dehiscence poses to all operative patients, vanadate presents an interesting therapeutic avenue to improve the strength of post-operative wounds and unstable chronic wounds to reduce the risk of dehiscence.


Assuntos
Ferida Cirúrgica , Cicatrização , Ratos , Camundongos , Animais , Vanadatos/farmacologia , Vanadatos/metabolismo , Vanadatos/uso terapêutico , Modelos Animais de Doenças , Resistência à Tração , Colágeno/metabolismo , Pele/lesões , Ferida Cirúrgica/metabolismo
7.
Ann Plast Surg ; 91(6): 779-783, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37553786

RESUMO

ABSTRACT: Cancer is currently the second leading cause of death in the United States. There is increasing evidence that the tumor microenvironment (TME) is pivotal for tumorigenesis and metastasis. Recently, adipocytes and cancer-associated fibroblasts (CAFs) in the TME have been shown to play a major role in tumorigenesis of different cancers, specifically melanoma. Animal studies have shown that CAFs and adipocytes within the TME help tumors evade the immune system, for example, by releasing chemokines to blunt the effectiveness of the host defense. Although studies have identified that adipocytes and CAFs play a role in tumorigenesis, adipocyte transition to fibroblast within the TME is fairly unknown. This review intends to elucidate the potential that adipocytes may have to transition to fibroblasts and, as part of the TME, a critical role that CAFs may play in affecting the growth and invasion of tumor cells. Future studies that illuminate the function of adipocytes and CAFs in the TME may pave way for new antitumor therapies.


Assuntos
Fibroblastos Associados a Câncer , Melanoma , Animais , Fibroblastos/patologia , Fibroblastos Associados a Câncer/patologia , Carcinogênese/patologia , Melanoma/patologia , Microambiente Tumoral/fisiologia
8.
J Clin Ethics ; 31(2): 126-135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32585656

RESUMO

Dementia is a growing issue at the end of life that presents unique challenges for advance care planning. Advance directives are a useful and important component of end-of-life planning, but standard advance directives have less utility in cases of loss of capacity due to dementia. An advance directive designed to specifically address end-of-life issues in the setting of dementia can provide patients with increased autonomy and caregivers with improved information about the desires of the individual in question. The Dartmouth Dementia Directive is a dementia-specific advance directive, available online, that seeks to address common concerns of individuals who are planning for dementia-related end-of-life care. This directive was piloted in a community-based workshop, which provided important details and perspective on the best use of dementia-specific advance directives in the greater population.


Assuntos
Diretivas Antecipadas , Demência , Assistência Terminal , Planejamento Antecipado de Cuidados , Diretivas Antecipadas/ética , Cuidadores , Humanos
9.
Genomics ; 110(5): 247-256, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29174847

RESUMO

Total knee arthroplasty (TKA) is a durable and reliable procedure to alleviate pain and improve joint function. However, failures related to flexion instability sometimes occur. The goal of this study was to define biological differences between tissues from patients with and without flexion instability of the knee after TKA. Human knee joint capsule tissues were collected at the time of primary or revision TKAs and analyzed by RT-qPCR and RNA-seq, revealing novel patterns of differential gene expression between the two groups. Interestingly, genes related to collagen production and extracellular matrix (ECM) degradation were higher in samples from patients with flexion instability. Partitioned clustering analyses further emphasized differential gene expression patterns between sample types that may help guide clinical interpretations of this complication. Future efforts to disentangle the effects of physical and biological (e.g., transcriptomic modifications) risk factors will aid in further characterizing and avoiding flexion instability after TKA.


Assuntos
Artroplastia do Joelho/efeitos adversos , Instabilidade Articular/genética , Complicações Pós-Operatórias/genética , Transcriptoma , Idoso , Estudos de Casos e Controles , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Humanos , Instabilidade Articular/etiologia , Instabilidade Articular/metabolismo , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Articulação do Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Complicações Pós-Operatórias/metabolismo
11.
Res Sq ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38853919

RESUMO

Background: Radiation-induced fibrosis (RIF) is a debilitating sequelae of radiation therapy that has been shown to improve with topical treatment with the iron chelator deferoxamine (DFO). We investigated whether DFO exerts this effect through attenuation of ferroptosis, a recently described iron-dependent pathway of cell death. Methods: Adult C57BL/6J mice were treated with topical DFO or ferrostastin-1 (Fer-1) and irradiated with 30 Grays of ionizing radiation to the dorsal skin to promote development of chronic RIF. Immunofluorescent staining with 4-hydroxynonenal (4-HNE) antibody was carried out directly following irradiation to assess ferroptosis activity. Perfusion testing with laser Doppler was performed throughout the healing interval. Eight weeks following radiation, dorsal skin was harvested and analyzed histologically and biomechanically. Results: Immunohistochemical staining demonstrated lower presence of 4-HNE in non-irradiated skin, DFO-treated skin, and Fer-1-treated skin compared to irradiated, untreated skin. DFO resulted in histological measurements (dermal thickness and collagen content) that resembled normal skin, while Fer-1 treatment yielded less significant improvements. These results were mirrored by analysis of extracellular matrix ultrastructure and biomechanical testing, which recapitulated the ability of topical DFO treatment to alleviate RIF across these parameters while Fer-1 resulted in less notable improvement. Finally, perfusion levels in DFO treated irradiated skin were similar to measurements in normal skin, while Fer-1 treatment did not impact this feature. Conclusions: Ferroptosis contributes to the development of RIF and attenuation of this process leads to reduced skin injury. DFO further improves RIF through additional enhancement of perfusion not seen with Fer-1.

12.
Radiat Oncol ; 19(1): 82, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926892

RESUMO

BACKGROUND: Radiation-induced fibrosis (RIF) is an important late complication of radiation therapy, and the resulting damaging effects of RIF can significantly impact reconstructive outcomes. There is currently a paucity of effective treatment options available, likely due to the continuing knowledge gap surrounding the cellular mechanisms involved. In this study, detailed analyses of irradiated and non-irradiated human skin samples were performed incorporating histological and single-cell transcriptional analysis to identify novel features guiding development of skin fibrosis following radiation injury. METHODS: Paired irradiated and contralateral non-irradiated skin samples were obtained from six female patients undergoing post-oncologic breast reconstruction. Skin samples underwent histological evaluation, immunohistochemistry, and biomechanical testing. Single-cell RNA sequencing was performed using the 10X single cell platform. Cells were separated into clusters using Seurat in R. The SingleR classifier was applied to ascribe cell type identities to each cluster. Differentially expressed genes characteristic to each cluster were then determined using non-parametric testing. RESULTS: Comparing irradiated and non-irradiated skin, epidermal atrophy, dermal thickening, and evidence of thick, disorganized collagen deposition within the extracellular matrix of irradiated skin were readily appreciated on histology. These histologic features were associated with stiffness that was higher in irradiated skin. Single-cell RNA sequencing revealed six predominant cell types. Focusing on fibroblasts/stromal lineage cells, five distinct transcriptional clusters (Clusters 0-4) were identified. Interestingly, while all clusters were noted to express Cav1, Cluster 2 was the only one to also express Cav2. Immunohistochemistry demonstrated increased expression of Cav2 in irradiated skin, whereas Cav1 was more readily identified in non-irradiated skin, suggesting Cav1 and Cav2 may act antagonistically to modulate fibrotic cellular responses. CONCLUSION: In response to radiation therapy, specific changes to fibroblast subpopulations and enhanced Cav2 expression may contribute to fibrosis. Altogether, this study introduces a novel pathway of caveolin involvement which may contribute to fibrotic development following radiation injury.


Assuntos
Caveolina 1 , Fibroblastos , Análise de Célula Única , Pele , Humanos , Feminino , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Caveolina 1/metabolismo , Caveolina 1/genética , Caveolina 1/biossíntese , Pele/efeitos da radiação , Pele/patologia , Pele/metabolismo , Neoplasias da Mama/radioterapia , Neoplasias da Mama/patologia , Caveolina 2/metabolismo , Caveolina 2/genética , Lesões por Radiação/patologia , Lesões por Radiação/metabolismo , Fibrose , Pessoa de Meia-Idade
13.
Cell Death Discov ; 10(1): 313, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969638

RESUMO

Ionizing radiation has been pivotal in cancer therapy since its discovery. Despite its therapeutic benefits, IR causes significant acute and chronic complications due to DNA damage and the generation of reactive oxygen species, which harm nucleic acids, lipids, and proteins. While cancer cells are more vulnerable to ionizing radiation due to their inefficiency in repairing damage, healthy cells in the irradiated area also suffer. Various types of cell death occur, including apoptosis, necrosis, pyroptosis, autophagy-dependent cell death, immunogenic cell death, and ferroptosis. Ferroptosis, driven by iron-dependent lipid peroxide accumulation, has been recognized as crucial in radiation therapy's therapeutic effects and complications, with extensive research across various tissues. This review aims to summarize the pathways involved in radiation-related ferroptosis, findings in different organs, and drugs targeting ferroptosis to mitigate its harmful effects.

14.
Am J Hosp Palliat Care ; : 10499091231200214, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655362

RESUMO

Introduction: Advance care planning (ACP), a critical component of quality dementia care, is underutilized due to lack of clinician comfort and the challenging nature of ACP in this context. The Serious Illness Conversation Guide (SICG) is a well-validated clinician-facing tool, developed with patient and clinician input, to facilitate ACP. The aim of this project was to adapt the SICG for dementia for the first time to promote high-quality ACP. Methods: This study uses a mixed-methods approach to adapt the SICG tool for use in dementia care. Experts with relevant clinical, ethical, and topical knowledge were interviewed to develop alterations to the SICG for dementia care. Patients and caregivers were shown a mock interview of the adapted SICG for dementia (SICG-D) to elicit feedback. Results: 8 relevant experts were interviewed. Adaptations included topical alterations to make the conversation more applicable to dementia as well as alterations to the structure of the conversation to accommodate the patient-caregiver dyad. Twenty interviews were conducted with 14 patients and 18 caregivers (either together or separately). A thematic content analysis of interview transcripts demonstrated positive impressions of the tool. In anonymous survey results, 94% reported a positive impression of the conversation and 89% endorsed incorporation of the adapted guide into dementia healthcare. Conclusion: This paper presents the SICG-D, an adapted version of the SICG for use in dementia care. This guide leverages the strengths of the SICG to promote values-based ACP conversations and has been adapted to better facilitate patient-caregiver-clinician triadic communication.

15.
Bioengineering (Basel) ; 10(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38135969

RESUMO

Wound healing is the body's process of injury recovery. Skin healing is divided into four distinct overlapping phases: hemostasis, inflammation, proliferation, and remodeling. Cell-to-cell interactions mediated by both cytokines and chemokines are imperative for the transition between these phases. Patients can face difficulties in the healing process due to the wound being too large, decreased vascularization, infection, or additional burdens of a systemic illness. The field of tissue engineering has been investigating biomaterials as an alternative for skin regeneration. Biomaterials used for wound healing may be natural, synthetic, or a combination of both. Once a specific biomaterial is selected, it acts as a scaffold for skin regeneration. When the scaffold is applied to a wound, it allows for the upregulation of distinct molecular signaling pathways important for skin repair. Although tissue engineering has made great progress, more research is needed in order to support the use of biomaterials for wound healing for clinical translation.

16.
Bioengineering (Basel) ; 10(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38136002

RESUMO

Implantable biomaterials represent the forefront of regenerative medicine, providing platforms and vessels for delivering a creative range of therapeutic benefits in diverse disease contexts. However, the chronic damage resulting from implant rejection tends to outweigh the intended healing benefits, presenting a considerable challenge when implementing treatment-based biomaterials. In response to implant rejection, proinflammatory macrophages and activated fibroblasts contribute to a synergistically destructive process of uncontrolled inflammation and excessive fibrosis. Understanding the complex biomaterial-host cell interactions that occur within the tissue microenvironment is crucial for the development of therapeutic biomaterials that promote tissue integration and minimize the foreign body response. Recent modifications of specific material properties enhance the immunomodulatory capabilities of the biomaterial and actively aid in taming the immune response by tuning interactions with the surrounding microenvironment either directly or indirectly. By incorporating modifications that amplify anti-inflammatory and pro-regenerative mechanisms, biomaterials can be optimized to maximize their healing benefits in harmony with the host immune system.

17.
Tissue Eng Part A ; 29(17-18): 481-490, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537959

RESUMO

Large skeletal muscle defects owing to trauma or following tumor extirpation can result in substantial functional impairment. Purified exosomes are now available clinically and have been used for wound healing. The objective of this study was to evaluate the regenerative capacity of commercially available exosomes on an animal model of volumetric muscle loss (VML) and its potential translation to human muscle injury. An established VML rat model was used. In the in vitro experiment, rat myoblasts were isolated and cocultured with 5% purified exosome product (PEP) to validate uptake. Myoblast proliferation and migration was evaluated with increasing concentrations of PEP (2.5%, 5%, and 10%) in comparison with control media (F10) and myoblast growth medium (MGM). In the in vivo experiment, a lateral gastrocnemius-VML defect was made in the rat hindlimb. Animals were randomized into four experimental groups; defects were treated with surgery alone, fibrin sealant, fibrin sealant and PEP, or platelet-rich plasma (PRP). The groups were further randomized into four recovery time points (14, 28, 45, or 90 days). The isometric tetanic force (ITF), which was measured as a percentage of force compared with normal limb, was used for functional evaluation. Florescence microscopy confirmed that 5% PEP demonstrated cellular uptake ∼8-12 h. Compared with the control, myoblasts showed faster proliferation with PEP irrespective of concentration. PEP concentrations of 2.5% and 5% promoted myoblast migration faster compared with the control (<0.05). At 90 days postop, both the PEP and fibrin sealant and PRP groups showed greater ITF compared with control and fibrin sealant alone (<0.05). At 45 days postop, PEP with fibrin sealant had greater cellularity compared with control (<0.05). At 90 days postop, both PEP with fibrin sealant and the PRP-treated groups had greater cellularity compared with fibrin sealant and control (<0.05). PEP promoted myoblast proliferation and migration. When delivered to a wound with a fibrin sealant, PEP allowed for muscle regeneration producing greater functional recovery and more cellularity in vivo compared with untreated animals. PEP may promote muscle regeneration in cases of VML; further research is warranted to evaluate PEP for the treatment of clinical muscle defects.


Assuntos
Exossomos , Regeneração , Ratos , Humanos , Animais , Adesivo Tecidual de Fibrina , Cicatrização , Músculo Esquelético/lesões
18.
Tissue Eng Part B Rev ; 29(6): 671-680, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37212342

RESUMO

Surgical implants are increasingly used across multiple medical disciplines, with applications ranging from tissue reconstruction to improving compromised organ and limb function. Despite their significant potential for improving health and quality of life, biomaterial implant function is severely limited by the body's immune response to its presence: this is known as the foreign body response (FBR) and is characterized by chronic inflammation and fibrotic capsule formation. This response can result in life-threatening sequelae such as implant malfunction, superimposed infection, and associated vessel thrombosis, in addition to soft tissue disfigurement. Patients may require frequent medical visits, as well as repeated invasive procedures, increasing the burden on an already strained health care system. Currently, the FBR and the cells and molecular mechanisms that mediate it are poorly understood. With applications across a wide array of surgical specialties, acellular dermal matrix (ADM) has emerged as a potential solution to the fibrotic reaction seen with FBR. Although the mechanisms by which ADM decreases chronic fibrosis remain to be clearly characterized, animal studies across diverse surgical models point to its biomimetic properties that facilitate decreased periprosthetic inflammation and improved host cell incorporation. Impact Statement Foreign body response (FBR) is a significant limitation to the use of implantable biomaterials. Acellular dermal matrix (ADM) has been observed to decrease the fibrotic reaction seen with FBR, although its mechanistic details are poorly understood. This review is dedicated to summarizing the primary literature on the biology of FBR in the context of ADM use, using surgical models in breast reconstruction, abdominal and chest wall repair, and pelvic reconstruction. This article will provide readers with an overarching review of shared mechanisms for ADM across multiple surgical models and diverse anatomical applications.


Assuntos
Derme Acelular , Corpos Estranhos , Animais , Humanos , Qualidade de Vida , Inflamação , Fibrose
19.
Ann Transl Med ; 11(12): 413, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38213816

RESUMO

Background and Objective: Breast reconstruction in patients with obesity presents numerous challenges, both in terms of surgical technique and post-operative complication management. As breast reconstruction techniques continue to evolve, the armamentarium of reconstructive options for patients with obesity has vastly expanded. Options now include immediate or delayed, implant-based, autologous, or hybrid reconstruction. Determining the optimal breast reconstruction in this complex population requires nuanced and experienced decision-making. Methods: A literature search was conducted to identify studies assessing breast reconstruction considerations in patients with obesity. The search was performed on PubMed and was limited to English language studies published between 1990 and 2023. Primary studies, case reports, chart reviews, and qualitative studies were included. Additional articles were identified for inclusion based on a review of references, as well as a web-based search, to identify additional studies that were not captured with the primary search strategy. Key Content and Findings: This narrative review article summarizes the current literature available to guide surgeons in breast reconstruction in patients with obesity. Conclusions: The advancements in oncologic surgery and breast reconstruction techniques have expanded available surgical options, including immediate or delayed implant-based, autologous, or hybrid breast reconstruction. Each approach has its unique advantages, disadvantages, and surgical considerations. Despite the challenges, patients with obesity can achieve favorable aesthetic outcomes through careful assessment of comorbidities and expectation management.

20.
Front Med (Lausanne) ; 10: 1015711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873870

RESUMO

There is undisputable benefit in translating basic science research concretely into clinical practice, and yet, the vast majority of therapies and treatments fail to achieve approval. The rift between basic research and approved treatment continues to grow, and in cases where a drug is granted approval, the average time from initiation of human trials to regulatory marketing authorization spans almost a decade. Albeit with these hurdles, recent research with deferoxamine (DFO) bodes significant promise as a potential treatment for chronic, radiation-induced soft tissue injury. DFO was originally approved by the Food and Drug Administration (FDA) in 1968 for the treatment of iron overload. However, investigators more recently have posited that its angiogenic and antioxidant properties could be beneficial in treating the hypovascular and reactive-oxygen species-rich tissues seen in chronic wounds and radiation-induced fibrosis (RIF). Small animal experiments of various chronic wound and RIF models confirmed that treatment with DFO improved blood flow and collagen ultrastructure. With a well-established safety profile, and now a strong foundation of basic scientific research that supports its potential use in chronic wounds and RIF, we believe that the next steps required for DFO to achieve FDA marketing approval will include large animal studies and, if those prove successful, human clinical trials. Though these milestones remain, the extensive research thus far leaves hope for DFO to bridge the gap between bench and wound clinic in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA