Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 119(18): 182501, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219591

RESUMO

We report the measurement of the beam-vector and tensor asymmetries A_{ed}^{V} and A_{d}^{T} in quasielastic (e[over →],e^{'}p) electrodisintegration of the deuteron at the MIT-Bates Linear Accelerator Center up to missing momentum of 500 MeV/c. Data were collected simultaneously over a momentum transfer range 0.1

2.
Phys Rev Lett ; 114(19): 192503, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26024167

RESUMO

New results are reported from a measurement of π^{0} electroproduction near threshold using the p(e,e^{'}p)π^{0} reaction. The experiment was designed to determine precisely the energy dependence of s- and p-wave electromagnetic multipoles as a stringent test of the predictions of chiral perturbation theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. For the first time, complete coverage of the ϕ_{π}^{*} and θ_{π}^{*} angles in the pπ^{0} center of mass was obtained for invariant energies above threshold from 0.5 up to 15 MeV. The 4-momentum transfer Q^{2} coverage ranges from 0.05 to 0.155 (GeV/c)^{2} in fine steps. A simple phenomenological analysis of our data shows strong disagreement with p-wave predictions from ChPT for Q^{2}>0.07 (GeV/c)^{2}, while the s-wave predictions are in reasonable agreement.

3.
Phys Rev Lett ; 113(2): 022002, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062166

RESUMO

Double-spin asymmetries and absolute cross sections were measured at large Bjorken x (0.25≤x≤0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized (3)He target. In this dedicated experiment, the spin structure function g(2)((3)He) was determined with precision at large x, and the neutron twist-3 matrix element d(2)(n) was measured at ⟨Q(2)⟩ of 3.21 and 4.32 GeV(2)/c(2), with an absolute precision of about 10(-5). Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at ⟨Q(2)⟩=5 GeV(2)/c(2). Combining d(2)(n) and a newly extracted twist-4 matrix element f(2)(n), the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 30 MeV/fm in magnitude.

4.
Phys Rev Lett ; 113(2): 022501, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062168

RESUMO

We studied simultaneously the (4)He(e,e'p), (4)He(e,e'pp), and (4)He(e,e'pn) reactions at Q(2)=2(GeV/c)(2) and x(B)>1, for an (e,e'p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A=2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum, in a region where the nucleon-nucleon (NN) force is expected to change from predominantly tensor to repulsive. The abundance of neutron-proton pairs is reduced as the nucleon momentum increases beyond ∼500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum. Our data are compared with calculations of two-nucleon momentum distributions in (4)He and discussed in the context of probing the elusive repulsive component of the NN force.

5.
Phys Rev Lett ; 113(2): 022502, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062169

RESUMO

We report the first measurement of the target-normal single-spin asymmetry in deep-inelastic scattering from the inclusive reaction 3)He(↑)(e,e')X on a polarized (3)He gas target. Assuming time-reversal invariance, this asymmetry is strictly zero in the Born approximation but can be nonzero if two-photon-exchange contributions are included. The experiment, conducted at Jefferson Lab using a 5.89 GeV electron beam, covers a range of 1.72 GeV, which is nonzero at the 2.89σ level. Our measured asymmetry agrees both in sign and magnitude with a two-photon-exchange model prediction that uses input from the Sivers transverse momentum distribution obtained from semi-inclusive deep-inelastic scattering.

6.
Phys Rev Lett ; 111(16): 164801, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24182271

RESUMO

High-power, relativistic electron beams from energy-recovering linacs have great potential to realize new experimental paradigms for pioneering innovation in fundamental and applied research. A major design consideration for this new generation of experimental capabilities is the understanding of the halo associated with these bright, intense beams. In this Letter, we report on measurements performed using the 100 MeV, 430 kW cw electron beam from the energy-recovering linac at the Jefferson Laboratory's Free Electron Laser facility as it traversed a set of small apertures in a 127 mm long aluminum block. Thermal measurements of the block together with neutron measurements near the beam-target interaction point yielded a consistent understanding of the beam losses. These were determined to be 3 ppm through a 2 mm diameter aperture and were maintained during a 7 h continuous run.

7.
8.
Phys Rev Lett ; 108(22): 222004, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23180491

RESUMO

We present new data for the polarization observables of the final state proton in the (1)H(γ,p)π(0) reaction. These data can be used to test predictions based on hadron helicity conservation and perturbative QCD. These data have both small statistical and systematic uncertainties and were obtained with beam energies between 1.8 and 5.6 GeV and for π(0) scattering angles larger than 75° in the center-of-mass frame. The data extend the polarization measurements database for neutral pion photoproduction up to E(γ)=5.6 GeV. The results show a nonzero induced polarization above the resonance region. The polarization transfer components vary rapidly with the photon energy and π(0) scattering angle in the center-of-mass frame. This indicates that hadron helicity conservation does not hold and that the perturbative QCD limit is still not reached in the energy regime of this experiment.

9.
Phys Rev Lett ; 106(13): 132501, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21520982

RESUMO

Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton electric to magnetic form factor ratio, G(E)/G(M), obtained separately from cross section and polarization transfer measurements. One possible explanation for this difference is a two-photon-exchange contribution. In an effort to search for effects beyond the one-photon-exchange or Born approximation, we report measurements of polarization transfer observables in the elastic H(e[over →],e(')p[over →]) reaction for three different beam energies at a Q(2)=2.5 GeV(2), spanning a wide range of the kinematic parameter ε. The ratio R, which equals µ(p)G(E)/G(M) in the Born approximation, is found to be independent of ε at the 1.5% level. The ε dependence of the longitudinal polarization transfer component P(ℓ) shows an enhancement of (2.3±0.6)% relative to the Born approximation at large ε.

10.
Phys Rev Lett ; 107(7): 072003, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21902386

RESUMO

We report the first measurement of target single spin asymmetries in the semi-inclusive (3)He(e,e'π(±))X reaction on a transversely polarized target. The experiment, conducted at Jefferson Lab using a 5.9 GeV electron beam, covers a range of 0.16 < x < 0.35 with 1.4 < Q(2) < 2.7 GeV(2). The Collins and Sivers moments were extracted from the azimuthal angular dependence of the measured asymmetries. The π(±) Collins moments for (3)He are consistent with zero, except for the π(+) moment at x = 0.35, which deviates from zero by 2.3σ. While the π(-) Sivers moments are consistent with zero, the π(+) Sivers moments favor negative values. The neutron results were extracted using the nucleon effective polarization and measured cross section ratios of proton to (3)He, and are largely consistent with the predictions of phenomenological fits and quark model calculations.

11.
Phys Rev Lett ; 107(25): 252501, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22243068

RESUMO

We report a precision measurement of the deuteron tensor analyzing powers T(20) and T(21) at the MIT-Bates Linear Accelerator Center. Data were collected simultaneously over a momentum transfer range Q=2.15-4.50 fm(-1) with the Bates Large Acceptance Spectrometer Toroid using a highly polarized deuterium internal gas target. The data are in excellent agreement with calculations in a framework of effective field theory. The deuteron charge monopole and quadrupole form factors G(C) and G(Q) were separated with improved precision, and the location of the first node of G(C) was confirmed at Q=4.19±0.05 fm(-1). The new data provide a strong constraint on theoretical models in a momentum transfer range covering the minimum of T(20) and the first node of G(C).

12.
Phys Rev Lett ; 104(24): 242301, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20873943

RESUMO

Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon's quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this Letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5 GeV2. By extending the range of Q2 for which G(E)(p) is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the nonperturbative regime.

13.
Science ; 346(6209): 614-7, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25323697

RESUMO

The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

14.
Phys Rev Lett ; 61(17): 2001, 1988 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-10038954
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA