Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
FASEB J ; 26(1): 40-50, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21914860

RESUMO

Thyroid hormone is a major determinant of energy expenditure and a key regulator of mitochondrial activity. We have previously identified a mitochondrial triiodothyronine receptor (p43) that acts as a mitochondrial transcription factor of the organelle genome, which leads, in vitro and in vivo, to a stimulation of mitochondrial biogenesis. Here we generated mice specifically lacking p43 to address its physiological influence. We found that p43 is required for normal glucose homeostasis. The p43(-/-) mice had a major defect in insulin secretion both in vivo and in isolated pancreatic islets and a loss of glucose-stimulated insulin secretion. Moreover, a high-fat/high-sucrose diet elicited more severe glucose intolerance than that recorded in normal animals. In addition, we observed in p43(-/-) mice both a decrease in pancreatic islet density and in the activity of complexes of the respiratory chain in isolated pancreatic islets. These dysfunctions were associated with a down-regulation of the expression of the glucose transporter Glut2 and of Kir6.2, a key component of the K(ATP) channel. Our findings establish that p43 is an important regulator of glucose homeostasis and pancreatic ß-cell function and provide evidence for the first time of a physiological role for a mitochondrial endocrine receptor.


Assuntos
Glicemia/metabolismo , Intolerância à Glucose/metabolismo , Homeostase/fisiologia , Insulina/metabolismo , Mitocôndrias/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Animais , Temperatura Corporal/fisiologia , Linhagem Celular , Gorduras na Dieta/farmacologia , Sacarose Alimentar/farmacologia , Intolerância à Glucose/genética , Humanos , Hipotermia/genética , Hipotermia/metabolismo , Insulina/sangue , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mioblastos/citologia , Mioblastos/fisiologia , Receptores dos Hormônios Tireóideos/genética , Hormônios Tireóideos/sangue
2.
Chem Biol Interact ; 175(1-3): 113-4, 2008 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-18550043

RESUMO

Congenital myasthenic syndromes (CMS) are a heterogeneous group of diseases caused by genetic defects affecting neuromuscular transmission. The causal mutations have been described in number of cases. The slow channel myasthenic syndrome (slow-channel-CMS) results in a marked prolongation of channel opening in stimulated receptors (nAChR) and the end plate acetylcholinesterase (AChE) deficiency congenital myasthenic syndrome (ColQ-CMS) results in an increased action of acetylcholine (ACh) at the synapse. Anticholinesterase medication is detrimental in these cases. The successful treatment of slow-channel-CMS patients with the antidepressant serotonin re-uptake inhibitor fluoxetine has been reported. At high concentration it has a non-depolarizing effect on nicotinic receptors. This led us to the idea that fluoxetine could protect AChR from a relative excess of ACh. We investigated the possible use of fluoxetine as treatment in the AChE KO mouse. Treatment at 6 mg/kg from 3 weeks to 2 months increased slightly the daily weight gain but not the final weight at 2 months in AChE-/- mice. Isometric force production of Tibialis anterior in response to electric nerve stimulation was measured in situ in AChE-/- and wild type mice treated or not by fluoxetine. The results show that the maximum twitch force in response to a single nerve stimulation, the maximal tetanic force (P0) in response to repetitive nerve stimulation and the tetanic fade are not changed in AChE-/- mice treated with fluoxetine versus control AChE-/- mice.


Assuntos
Acetilcolinesterase/metabolismo , Fluoxetina/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Acetilcolinesterase/genética , Animais , Camundongos , Camundongos Knockout , Junção Neuromuscular/fisiologia
3.
Chem Biol Interact ; 175(1-3): 129-30, 2008 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-18550042

RESUMO

Although acetylcholinesterase (AChE) knockout mice survive, they have abnormal neuromuscular function. We analysed further the effects of the mutation on hind limb muscle contractile properties. Tibialis anterior muscle from AChE KO mice is unable to maintain tension during a short period of repetitive nerve stimulation (tetanic fade) and has an increased twitch tension in response to a single nerve electric stimulation. In response to direct muscle stimulation, we found that maximal velocity of shortening of soleus muscle is increased and maximum tetanic force is decreased in AchE KO mice versus control animals. As the contractile properties of the soleus muscle were altered by AChE ablation, our results suggest cellular and molecular changes in AChE ablated muscle containing both fast and slow muscle fibres.


Assuntos
Acetilcolinesterase/metabolismo , Músculo Esquelético/fisiologia , Acetilcolinesterase/genética , Animais , Estimulação Elétrica , Contração Isométrica , Camundongos , Camundongos Knockout , Músculo Esquelético/enzimologia
4.
Nat Neurosci ; 5(2): 111-8, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11753420

RESUMO

The neurotransmitter acetylcholine (ACh) has a crucial role in central and neuromuscular synapses of the cholinergic system. After release into the synaptic cleft, ACh is rapidly degraded by acetylcholinesterase (AChE). We have identified a mutation in the ache gene of the zebrafish, which abolishes ACh hydrolysis in homozygous animals completely. Embryos are initially motile but subsequently develop paralysis. Mutant embryos show defects in muscle fiber formation and innervation, and primary sensory neurons die prematurely. The neuromuscular phenotype in ache mutants is suppressed by a homozygous loss-of-function allele of the alpha-subunit of the nicotinic acetylcholine receptor (nAChR), indicating that the impairment of neuromuscular development is mediated by activation of nAChR in the mutant. Here we provide genetic evidence for non-classical functions of AChE in vertebrate development.


Assuntos
Acetilcolinesterase/fisiologia , Músculo Esquelético/embriologia , Sistema Nervoso/embriologia , Neurônios/fisiologia , Peixe-Zebra/embriologia , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Sequência de Aminoácidos/genética , Animais , Sequência de Bases/genética , Morte Celular , Embrião não Mamífero/fisiologia , Dados de Sequência Molecular , Doenças Musculares/genética , Mutação/fisiologia , Junção Neuromuscular/embriologia , Neurônios Aferentes/fisiologia , Fenótipo , Receptores Nicotínicos/fisiologia , Peixe-Zebra/genética
5.
Behav Brain Res ; 296: 351-360, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26306824

RESUMO

Butyrylcholinesterase (BChE) is an important enzyme for detoxication and metabolism of ester compounds. It also hydrolyzes the neurotransmitter acetylcholine (ACh) in pathological conditions and may play a role in Alzheimer's disease (AD). We here compared the learning ability and vulnerability to Aß toxicity in male and female BChE knockout (KO) mice and their 129Sv wild-type (Wt) controls. Animals tested for place learning in the water-maze showed increased acquisition slopes and presence in the training quadrant during the probe test. An increased passive avoidance response was also observed for males. BChE KO mice therefore showed enhanced learning ability in spatial and non-spatial memory tests. Intracerebroventricular (ICV) injection of increasing doses of amyloid-ß[25-35] (Aß25-35) peptide oligomers resulted, in Wt mice, in learning and memory deficits, oxidative stress and decrease in ACh hippocampal content. In BChE KO mice, the Aß25-35-induced deficit in place learning was attenuated in males and blocked in females. No change in lipid peroxidation or ACh levels was observed after Aß25-35 treatment in male or female BChE KO mice. These data showed that the genetic invalidation of BChE in mice augmented learning capacities and lowered the vulnerability to Aß toxicity.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Comportamento Animal/fisiologia , Butirilcolinesterase/fisiologia , Transtornos Cognitivos/induzido quimicamente , Fragmentos de Peptídeos/toxicidade , Aprendizagem Espacial/fisiologia , Peptídeos beta-Amiloides/administração & dosagem , Animais , Butirilcolinesterase/genética , Transtornos Cognitivos/fisiopatologia , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Fragmentos de Peptídeos/administração & dosagem , Fatores Sexuais
6.
PLoS One ; 8(9): e75111, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098680

RESUMO

Thyroid hormones (TH) play an important regulatory role in energy expenditure regulation and are key regulators of mitochondrial activity. We have previously identified a mitochondrial triiodothyronine (T3) receptor (p43) which acts as a mitochondrial transcription factor of the organelle genome, which leads in vitro and in vivo, to a stimulation of mitochondrial biogenesis. Recently, we generated mice carrying a specific p43 invalidation. At 2 months of age, we reported that p43 depletion in mice induced a major defect in insulin secretion both in vivo and in isolated pancreatic islets, and a loss of glucose-stimulated insulin secretion. The present study was designed to determine whether p43 invalidation influences life expectancy and modulates blood glucose and insulin levels as well as glucose tolerance or insulin sensitivity during aging. We report that from 4 months old onwards, mice lacking p43 are leaner than wild-type mice. p43-/- mice also have a moderate reduction of life expectancy compared to wild type. We found no difference in blood glucose levels, excepted at 24 months old where p43-/- mice showed a strong hyperglycemia in fasting conditions compared to controls animals. However, the loss of glucose-stimulated insulin secretion was maintained whatever the age of mice lacking p43. If up to 12 months old, glucose tolerance remained unchanged, beyond this age p43-/- mice became increasingly glucose intolerant. In addition, if up to 12 months old p43 deficient animals were more sensitive to insulin, after this age we observed a loss of this capacity, culminating in 24 months old mice with a decreased sensitivity to the hormone. In conclusion, we demonstrated that during aging the depletion of the mitochondrial T3 receptor p43 in mice progressively induced an increased glycemia in the fasted state, glucose intolerance and an insulin-resistance several features of type-2 diabetes.


Assuntos
Envelhecimento/fisiologia , Intolerância à Glucose/genética , Resistência à Insulina/genética , Proteínas Mitocondriais/deficiência , Receptores dos Hormônios Tireóideos/deficiência , Envelhecimento/genética , Animais , Glicemia/metabolismo , Peso Corporal/genética , Dióxido de Carbono/metabolismo , Insulina/sangue , Masculino , Camundongos , Camundongos Knockout , Consumo de Oxigênio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA