RESUMO
BACKGROUND: Identifying and tackling the social determinants of infectious diseases has become a public health priority following the recognition that individuals with lower socioeconomic status are disproportionately affected by infectious diseases. In many parts of the world, epidemiologically and genotypically defined community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) strains have emerged to become frequent causes of hospital infection. The aim of this study was to use spatial models with adjustment for area-level hospital attendance to determine the transmission niche of genotypically defined CA- and health-care-associated (HA)-MRSA strains across a diverse region of South East London and to explore a potential link between MRSA carriage and markers of social and material deprivation. METHODS AND FINDINGS: This study involved spatial analysis of cross-sectional data linked with all MRSA isolates identified by three National Health Service (NHS) microbiology laboratories between 1 November 2011 and 29 February 2012. The cohort of hospital-based NHS microbiology diagnostic services serves 867,254 usual residents in the Lambeth, Southwark, and Lewisham boroughs in South East London, United Kingdom (UK). Isolates were classified as HA- or CA-MRSA based on whole genome sequencing. All MRSA cases identified over 4 mo within the three-borough catchment area (n = 471) were mapped to small geographies and linked to area-level aggregated socioeconomic and demographic data. Disease mapping and ecological regression models were used to infer the most likely transmission niches for each MRSA genetic classification and to describe the spatial epidemiology of MRSA in relation to social determinants. Specifically, we aimed to identify demographic and socioeconomic population traits that explain cross-area extra variation in HA- and CA-MRSA relative risks following adjustment for hospital attendance data. We explored the potential for associations with the English Indices of Deprivation 2010 (including the Index of Multiple Deprivation and several deprivation domains and subdomains) and the 2011 England and Wales census demographic and socioeconomic indicators (including numbers of households by deprivation dimension) and indicators of population health. Both CA-and HA-MRSA were associated with household deprivation (CA-MRSA relative risk [RR]: 1.72 [1.03-2.94]; HA-MRSA RR: 1.57 [1.06-2.33]), which was correlated with hospital attendance (Pearson correlation coefficient [PCC] = 0.76). HA-MRSA was also associated with poor health (RR: 1.10 [1.01-1.19]) and residence in communal care homes (RR: 1.24 [1.12-1.37]), whereas CA-MRSA was linked with household overcrowding (RR: 1.58 [1.04-2.41]) and wider barriers, which represent a combined score for household overcrowding, low income, and homelessness (RR: 1.76 [1.16-2.70]). CA-MRSA was also associated with recent immigration to the UK (RR: 1.77 [1.19-2.66]). For the area-level variation in RR for CA-MRSA, 28.67% was attributable to the spatial arrangement of target geographies, compared with only 0.09% for HA-MRSA. An advantage to our study is that it provided a representative sample of usual residents receiving care in the catchment areas. A limitation is that relationships apparent in aggregated data analyses cannot be assumed to operate at the individual level. CONCLUSIONS: There was no evidence of community transmission of HA-MRSA strains, implying that HA-MRSA cases identified in the community originate from the hospital reservoir and are maintained by frequent attendance at health care facilities. In contrast, there was a high risk of CA-MRSA in deprived areas linked with overcrowding, homelessness, low income, and recent immigration to the UK, which was not explainable by health care exposure. Furthermore, areas adjacent to these deprived areas were themselves at greater risk of CA-MRSA, indicating community transmission of CA-MRSA. This ongoing community transmission could lead to CA-MRSA becoming the dominant strain types carried by patients admitted to hospital, particularly if successful hospital-based MRSA infection control programmes are maintained. These results suggest that community infection control programmes targeting transmission of CA-MRSA will be required to control MRSA in both the community and hospital. These epidemiological changes will also have implications for effectiveness of risk-factor-based hospital admission MRSA screening programmes.
Assuntos
Infecções Comunitárias Adquiridas/epidemiologia , Infecção Hospitalar , Privação Materna , Staphylococcus aureus Resistente à Meticilina , Isolamento Social , Infecções Estafilocócicas/epidemiologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Infecções Comunitárias Adquiridas/diagnóstico , Infecções Comunitárias Adquiridas/psicologia , Estudos Transversais , Interpretação Estatística de Dados , Feminino , Humanos , Lactente , Recém-Nascido , Londres/epidemiologia , Masculino , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Pessoa de Meia-Idade , Isolamento Social/psicologia , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/psicologia , Adulto JovemRESUMO
BACKGROUND: Isolates of methicillin-resistant Staphylococcus aureus (MRSA) belonging to a single lineage are often indistinguishable by means of current typing techniques. Whole-genome sequencing may provide improved resolution to define transmission pathways and characterize outbreaks. METHODS: We investigated a putative MRSA outbreak in a neonatal intensive care unit. By using rapid high-throughput sequencing technology with a clinically relevant turnaround time, we retrospectively sequenced the DNA from seven isolates associated with the outbreak and another seven MRSA isolates associated with carriage of MRSA or bacteremia in the same hospital. RESULTS: We constructed a phylogenetic tree by comparing single-nucleotide polymorphisms (SNPs) in the core genome to a reference genome (an epidemic MRSA clone, EMRSA-15 [sequence type 22]). This revealed a distinct cluster of outbreak isolates and clear separation between these and the nonoutbreak isolates. A previously missed transmission event was detected between two patients with bacteremia who were not part of the outbreak. We created an artificial "resistome" of antibiotic-resistance genes and demonstrated concordance between it and the results of phenotypic susceptibility testing; we also created a "toxome" consisting of toxin genes. One outbreak isolate had a hypermutator phenotype with a higher number of SNPs than the other outbreak isolates, highlighting the difficulty of imposing a simple threshold for the number of SNPs between isolates to decide whether they are part of a recent transmission chain. CONCLUSIONS: Whole-genome sequencing can provide clinically relevant data within a time frame that can influence patient care. The need for automated data interpretation and the provision of clinically meaningful reports represent hurdles to clinical implementation. (Funded by the U.K. Clinical Research Collaboration Translational Infection Research Initiative and others.).
Assuntos
Bacteriemia/microbiologia , Surtos de Doenças , Genoma Bacteriano , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/epidemiologia , Bacteriemia/epidemiologia , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , DNA Bacteriano/análise , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Resistência a Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos , Análise de Sequência de DNA/métodos , Infecções Estafilocócicas/microbiologiaRESUMO
IMPORTANCE: Identification of the bacterium responsible for an outbreak can aid in disease management. However, traditional culture-based diagnosis can be difficult, particularly if no specific diagnostic test is available for an outbreak strain. OBJECTIVE: To explore the potential of metagenomics, which is the direct sequencing of DNA extracted from microbiologically complex samples, as an open-ended clinical discovery platform capable of identifying and characterizing bacterial strains from an outbreak without laboratory culture. DESIGN, SETTING, AND PATIENTS: In a retrospective investigation, 45 samples were selected from fecal specimens obtained from patients with diarrhea during the 2011 outbreak of Shiga-toxigenic Escherichia coli (STEC) O104:H4 in Germany. Samples were subjected to high-throughput sequencing (August-September 2012), followed by a 3-phase analysis (November 2012-February 2013). In phase 1, a de novo assembly approach was developed to obtain a draft genome of the outbreak strain. In phase 2, the depth of coverage of the outbreak strain genome was determined in each sample. In phase 3, sequences from each sample were compared with sequences from known bacteria to identify pathogens other than the outbreak strain. MAIN OUTCOMES AND MEASURES: The recovery of genome sequence data for the purposes of identification and characterization of the outbreak strain and other pathogens from fecal samples. RESULTS: During phase 1, a draft genome of the STEC outbreak strain was obtained. During phase 2, the outbreak strain genome was recovered from 10 samples at greater than 10-fold coverage and from 26 samples at greater than 1-fold coverage. Sequences from the Shiga-toxin genes were detected in 27 of 40 STEC-positive samples (67%). In phase 3, sequences from Clostridium difficile, Campylobacter jejuni, Campylobacter concisus, and Salmonella enterica were recovered. CONCLUSIONS AND RELEVANCE: These results suggest the potential of metagenomics as a culture-independent approach for the identification of bacterial pathogens during an outbreak of diarrheal disease. Challenges include improving diagnostic sensitivity, speeding up and simplifying workflows, and reducing costs.
Assuntos
Surtos de Doenças , Infecções por Escherichia coli/diagnóstico , Metagenômica/métodos , Escherichia coli Shiga Toxigênica/genética , Biologia Computacional/métodos , DNA Bacteriano/análise , Diarreia , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Humanos , Estudos Retrospectivos , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos , Toxina Shiga/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Fatores de TempoRESUMO
The public health threat posed by a looming 'post-antibiotic' era necessitates new approaches to antibiotic discovery. Drug development has typically avoided exploitation of membrane-binding properties, in contrast to nature's control of biological pathways via modulation of membrane-associated proteins and membrane lipid composition. Here, we describe the rejuvenation of the glycopeptide antibiotic vancomycin via selective targeting of bacterial membranes. Peptide libraries based on positively charged electrostatic effector sequences are ligated to N-terminal lipophilic membrane-insertive elements and then conjugated to vancomycin. These modified lipoglycopeptides, the 'vancapticins', possess enhanced membrane affinity and activity against methicillin-resistant Staphylococcus aureus (MRSA) and other Gram-positive bacteria, and retain activity against glycopeptide-resistant strains. Optimised antibiotics show in vivo efficacy in multiple models of bacterial infection. This membrane-targeting strategy has potential to 'revitalise' antibiotics that have lost effectiveness against recalcitrant bacteria, or enhance the activity of other intravenous-administered drugs that target membrane-associated receptors.
Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Daptomicina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Vancomicina/farmacologia , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacocinética , Bactérias/classificação , Sobrevivência Celular/efeitos dos fármacos , Glicopeptídeos/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacosRESUMO
For the first time a new, two-step method is described for synthesizing deoxyribonucleic acid. The approach uses 5'-carbonate protected 2'-deoxynucleoside-3'-phosphoramidites as synthons and a peroxy anion buffer that removes the carbonate protecting group and oxidizes the internucleotide linkage. Following synthesis via this two-step cycle, oligomers are isolated by standard procedures.
Assuntos
DNA/síntese química , Amidas/química , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Indicadores e Reagentes/química , Espectroscopia de Ressonância Magnética , Oxirredução , Ácidos Fosfóricos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizAssuntos
Inibidores Enzimáticos , Monoéster Fosfórico Hidrolases/isolamento & purificação , Técnicas Biossensoriais/métodos , Catálise , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Cinética , Monoéster Fosfórico Hidrolases/análise , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Soroalbumina Bovina/químicaRESUMO
A novel solid-phase phosphoramidite based oligodeoxynucleotide two-step synthesis method has been developed. Keys to this method are replacement of the 5'-dimethoxytrityl blocking group with an aryloxycarbonyl and the use of N-dimethoxytrityl protection for the exocyclic amines of adenine and cytosine. With these modifications, coupling of each 2'-deoxynucleoside 3'-phosphoramidite to the growing oligodeoxynucleotide on the solid support can be followed by treatment with an aqueous mixture of peroxy anions buffered at pH 9.6. This reagent effectively removes the carbonate protecting group and simultaneously oxidizes the phosphite internucleotide linkage. As a consequence a new two-step synthesis cycle is possible. Oligodeoxynucleotides synthesized using this approach are identical to authentic samples when tested by a variety of analytical techniques.
Assuntos
Oligonucleotídeos/síntese química , Peróxidos/química , Ânions/química , Cromatografia Líquida de Alta Pressão , DNA/síntese química , Compostos Organofosforados/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
The process of native chemical ligation (NCL) is well described in the literature. An N-terminal cysteine-containing peptide reacts with a C-terminal thioester-containing peptide to yield a native amide bond after transesterification and acyl transfer. An N-terminal cysteine is required as both the N-terminal amino function and the sidechain thiol participate in the ligation reaction. In certain circumstances it is desirable, or even imperative, that the N-terminal region of a peptidic reaction partner remain unmodified, for Instance for the retention of biological activity after ligation. This work discusses the synthesis of a pseudo-N-terminal cysteine building block for incorporation into peptides using standard methods of solid phase synthesis. Upon deprotection, this building block affords a de facto N-terminal cysteine positioned on an amino acid sidechain. which is capable of undergoing native chemical ligation with a thioester. The syntheses of several peptides and structures containing this motif are detailed, their reactions discussed. and further applications of this technology proposed.