Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 623(7985): 149-156, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37880367

RESUMO

Host factors that mediate Leishmania genetic exchange are not well defined. Here we demonstrate that natural IgM (IgMn)1-4 antibodies mediate parasite genetic exchange by inducing the transient formation of a spherical parasite clump that promotes parasite fusion and hybrid formation. We establish that IgMn from Leishmania-free animals binds to the surface of Leishmania parasites to induce significant changes in the expression of parasite transcripts and proteins. Leishmania binding to IgMn is partially lost after glycosidase treatment, although parasite surface phosphoglycans, including lipophosphoglycan, are not required for IgMn-induced parasite clumping. Notably, the transient formation of parasite clumps is essential for Leishmania hybridization in vitro. In vivo, we observed a 12-fold increase in hybrid formation in sand flies provided a second blood meal containing IgMn compared with controls. Furthermore, the generation of recombinant progeny from mating hybrids and parental lines were only observed in sand flies provided with IgMn. Both in vitro and in vivo IgM-induced Leishmania crosses resulted in full genome hybrids that show equal patterns of biparental contribution. Leishmania co-option of a host natural antibody to facilitate mating in the insect vector establishes a new paradigm of parasite-host-vector interdependence that contributes to parasite diversity and fitness by promoting genetic exchange.


Assuntos
Interações Hospedeiro-Parasita , Imunoglobulina M , Leishmania , Psychodidae , Reprodução , Animais , Hibridização Genética , Imunoglobulina M/imunologia , Leishmania/genética , Leishmania/imunologia , Psychodidae/imunologia , Psychodidae/parasitologia , Reprodução/genética , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Regulação da Expressão Gênica , Glicosídeo Hidrolases/metabolismo
2.
J Biol Chem ; 299(6): 104745, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37094699

RESUMO

The accessibility of sterols in mammalian cells to exogenous sterol-binding agents has been well-described previously, but sterol accessibility in distantly related protozoa is unclear. The human pathogen Leishmania major uses sterols and sphingolipids distinct from those used in mammals. Sterols in mammalian cells can be sheltered from sterol-binding agents by membrane components, including sphingolipids, but the surface exposure of ergosterol in Leishmania remains unknown. Here, we used flow cytometry to test the ability of the L. major sphingolipids inositol phosphorylceramide (IPC) and ceramide to shelter ergosterol by preventing binding of the sterol-specific toxins streptolysin O and perfringolysin O and subsequent cytotoxicity. In contrast to mammalian systems, we found that Leishmania sphingolipids did not preclude toxin binding to sterols in the membrane. However, we show that IPC reduced cytotoxicity and that ceramide reduced perfringolysin O- but not streptolysin O-mediated cytotoxicity in cells. Furthermore, we demonstrate ceramide sensing was controlled by the toxin L3 loop, and that ceramide was sufficient to protect L. major promastigotes from the anti-leishmaniasis drug amphotericin B. Based on these results, we propose a mechanism whereby pore-forming toxins engage additional lipids like ceramide to determine the optimal environment to sustain pore formation. Thus, L. major could serve as a genetically tractable protozoan model organism for understanding toxin-membrane interactions.


Assuntos
Membrana Celular , Ceramidas , Leishmania major , Esfingolipídeos , Ceramidas/química , Ergosterol/química , Esfingolipídeos/química , Esteróis/química , Membrana Celular/química
3.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385330

RESUMO

Glycoconjugates play major roles in the infectious cycle of the trypanosomatid parasite Leishmania While GDP-Fucose synthesis is essential, fucosylated glycoconjugates have not been reported in Leishmania major [H. Guo et al., J. Biol. Chem. 292, 10696-10708 (2017)]. Four predicted fucosyltransferases appear conventionally targeted to the secretory pathway; SCA1/2 play a role in side-chain modifications of lipophosphoglycan, while gene deletion studies here showed that FUT2 and SCAL were not essential. Unlike most eukaryotic glycosyltransferases, the predicted α 1-2 fucosyltransferase encoded by FUT1 localized to the mitochondrion. A quantitative "plasmid segregation" assay, expressing FUT1 from the multicopy episomal pXNG vector in a chromosomal null ∆fut1- background, established that FUT1 is essential. Similarly, "plasmid shuffling" confirmed that both enzymatic activity and mitochondrial localization were required for viability, comparing import-blocked or catalytically inactive enzymes, respectively. Enzymatic assays of tagged proteins expressed in vivo or of purified recombinant FUT1 showed it had a broad fucosyltransferase activity including glycan and peptide substrates. Unexpectedly, a single rare ∆fut1- segregant (∆fut1s ) was obtained in rich media, which showed severe growth defects accompanied by mitochondrial dysfunction and loss, all of which were restored upon FUT1 reexpression. Thus, FUT1 along with the similar Trypanosoma brucei enzyme TbFUT1 [G. Bandini et al., bioRxiv, https://www.biorxiv.org/content/10.1101/726117v2 (2021)] joins the eukaryotic O-GlcNAc transferase isoform as one of the few glycosyltransferases acting within the mitochondrion. Trypanosomatid mitochondrial FUT1s may offer a facile system for probing mitochondrial glycosylation in a simple setting, and their essentiality for normal growth and mitochondrial function renders it an attractive target for chemotherapy of these serious human pathogens.


Assuntos
Fucosiltransferases/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Leishmania major/metabolismo , Mitocôndrias/enzimologia , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Meios de Cultura , Fucosiltransferases/genética , Mutação , Plasmídeos , Transporte Proteico , Proteínas de Protozoários/genética , Galactosídeo 2-alfa-L-Fucosiltransferase
4.
J Biol Chem ; 298(11): 102522, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162499

RESUMO

Many pathogens synthesize inositol phosphorylceramide (IPC) as the major sphingolipid (SL), differing from the mammalian host where sphingomyelin (SM) or more complex SLs predominate. The divergence between IPC synthase and mammalian SL synthases has prompted interest as a potential drug target. However, in the trypanosomatid protozoan Leishmania, cultured insect stage promastigotes lack de novo SL synthesis (Δspt2-) and SLs survive and remain virulent, as infective amastigotes salvage host SLs and continue to produce IPC. To further understand the role of IPC, we generated null IPCS mutants in Leishmania major (Δipcs-). Unexpectedly and unlike fungi where IPCS is essential, Δipcs- was remarkably normal in culture and highly virulent in mouse infections. Both IPCS activity and IPC were absent in Δipcs- promastigotes and amastigotes, arguing against an alternative route of IPC synthesis. Notably, salvaged mammalian SM was highly abundant in purified amastigotes from both WT and Δipcs-, and salvaged SLs could be further metabolized into IPC. SM was about 7-fold more abundant than IPC in WT amastigotes, establishing that SM is the dominant amastigote SL, thereby rendering IPC partially redundant. These data suggest that SM salvage likely plays key roles in the survival and virulence of both WT and Δipcs- parasites in the infected host, confirmation of which will require the development of methods or mutants deficient in host SL/SM uptake in the future. Our findings call into question the suitability of IPCS as a target for chemotherapy, instead suggesting that approaches targeting SM/SL uptake or catabolism may warrant further emphasis.


Assuntos
Hexosiltransferases , Leishmania major , Leishmaniose Cutânea , Esfingomielinas , Animais , Camundongos , Leishmania major/enzimologia , Leishmania major/genética , Esfingomielinas/metabolismo , Virulência , Glicoesfingolipídeos/metabolismo , Proteínas de Protozoários/genética , Hexosiltransferases/genética , Leishmaniose Cutânea/parasitologia , Deleção de Sequência
5.
PLoS Pathog ; 17(9): e1008768, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34559857

RESUMO

Trypanosome Lytic Factor (TLF) is a primate-specific high-density lipoprotein (HDL) complex that, through the cation channel-forming protein apolipoprotein L-1 (APOL1), provides innate immunity to select kinetoplastid parasites. The immunoprotective effects of TLF have been extensively investigated in the context of its interaction with the extracellular protozoan Trypanosoma brucei brucei, to which it confers sterile immunity. We previously showed that TLF could act against an intracellular pathogen Leishmania, and here we dissected the role of TLF and its synergy with host-immune cells. Leishmania major is transmitted by Phlebotomine sand flies, which deposit the parasite intradermally into mammalian hosts, where neutrophils are the predominant phagocytes recruited to the site of infection. Once in the host, the parasites are phagocytosed and shed their surface glycoconjugates during differentiation to the mammalian-resident amastigote stage. Our data show that mice producing TLF have reduced parasite burdens when infected intradermally with metacyclic promastigotes of L. major, the infective, fly-transmitted stage. This TLF-mediated reduction in parasite burden was lost in neutrophil-depleted mice, suggesting that early recruitment of neutrophils is required for TLF-mediated killing of L. major. In vitro we find that only metacyclic promastigotes co-incubated with TLF in an acidic milieu were lysed. However, amastigotes were not killed by TLF at any pH. These findings correlated with binding experiments, revealing that labeled TLF binds specifically to the surface of metacyclic promastigotes, but not to amastigotes. Metacyclic promastigotes of L. major deficient in the synthesis of surface glycoconjugates LPG and/or PPG (lpg1- and lpg5A-/lpg5B- respectively) whose absence mimics the amastigote surface, were resistant to TLF-mediated lysis. We propose that TLF binds to the outer surface glycoconjugates of metacyclic promastigotes, whereupon it kills the parasite in the acidic phagosome of phagocytes. We hypothesize that resistance to TLF requires shedding of the surface glycoconjugates, which occurs several hours after phagocytosis by immune cells, creating a relatively short-lived but effective window for TLF to act against Leishmania.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Imunidade Inata , Leishmaniose Cutânea , Lipoproteínas HDL/metabolismo , Animais , Humanos , Leishmania major , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/patologia , Lipoproteínas HDL/imunologia , Camundongos
6.
PLoS Pathog ; 17(3): e1009422, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33765083

RESUMO

The oxidative burst generated by the host immune system can restrict intracellular parasite entry and growth. While this burst leads to the induction of antioxidative enzymes, the molecular mechanisms and the consequences of this counter-response on the life of intracellular human parasites are largely unknown. The transcription factor NF-E2-related factor (NRF2) could be a key mediator of antioxidant signaling during infection due to the entry of parasites. Here, we showed that NRF2 was strongly upregulated in infection with the human Leishmania protozoan parasites, its activation was dependent on a NADPH oxidase 2 (NOX2) and SRC family of protein tyrosine kinases (SFKs) signaling pathway and it reprogrammed host cell metabolism. In inflammatory leishmaniasis caused by a viral endosymbiont inducing TNF-α in chronic leishmaniasis, NRF2 activation promoted parasite persistence but limited TNF-α production and tissue destruction. These data provided evidence of the dual role of NRF2 in protecting both the invading pathogen from reactive oxygen species and the host from an excess of the TNF-α destructive pro-inflammatory cytokine.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Leishmania/metabolismo , Leishmaniose/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Animais , Inflamação/imunologia , Inflamação/metabolismo , Leishmania/imunologia , Leishmaniose/imunologia , Camundongos , Fator 2 Relacionado a NF-E2/imunologia , Transdução de Sinais/imunologia
7.
Nucleic Acids Res ; 49(22): 12706-12715, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34791430

RESUMO

Endogenous retroviruses (ERVs) are subject to transcriptional repression in adult tissues, in part to prevent autoimmune responses. However, little is known about the epigenetic silencing of ERV expression. Here, we describe a new role for inhibitor of growth family member 3 (ING3), to add to an emerging group of ERV transcriptional regulators. Our results show that ING3 binds to several ERV promoters (for instance MER21C) and establishes an EZH2-mediated H3K27 trimethylation modification. Loss of ING3 leads to decreases of H3K27 trimethylation enrichment at ERVs, induction of MDA5-MAVS-interferon signaling, and functional inhibition of several virus infections. These data demonstrate an important new function of ING3 in ERV silencing and contributing to innate immune regulation in somatic cells.


Assuntos
Retrovirus Endógenos , Inativação Gênica , Proteínas de Homeodomínio/fisiologia , Imunidade Inata/genética , Proteínas Supressoras de Tumor/fisiologia , Sistemas CRISPR-Cas , Células HT29 , Células HeLa , Código das Histonas , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas Supressoras de Tumor/metabolismo
8.
PLoS Genet ; 15(5): e1008042, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31091230

RESUMO

Hybrid genotypes have been repeatedly described among natural isolates of Leishmania, and the recovery of experimental hybrids from sand flies co-infected with different strains or species of Leishmania has formally demonstrated that members of the genus possess the machinery for genetic exchange. As neither gamete stages nor cell fusion events have been directly observed during parasite development in the vector, we have relied on a classical genetic analysis to determine if Leishmania has a true sexual cycle. Here, we used whole genome sequencing to follow the chromosomal inheritance patterns of experimental hybrids generated within and between different strains of L. major and L. infantum. We also generated and sequenced the first experimental hybrids in L. tropica. We found that in each case the parental somy and allele contributions matched the inheritance patterns expected under meiosis 97-99% of the time. The hybrids were equivalent to F1 progeny, heterozygous throughout most of the genome for the markers that were homozygous and different between the parents. Rare, non-Mendelian patterns of chromosomal inheritance were observed, including a gain or loss of somy, and loss of heterozygosity, that likely arose during meiosis or during mitotic divisions of the progeny clones in the fly or culture. While the interspecies hybrids appeared to be sterile, the intraspecies hybrids were able to produce backcross and outcross progeny. Analysis of 5 backcross and outcross progeny clones generated from an L. major F1 hybrid, as well as 17 progeny clones generated from backcrosses involving a natural hybrid of L. tropica, revealed genome wide patterns of recombination, demonstrating that classical crossing over occurs at meiosis, and allowed us to construct the first physical and genetic maps in Leishmania. Altogether, the findings provide strong evidence for meiosis-like sexual recombination in Leishmania, presenting clear opportunities for forward genetic analysis and positional cloning of important genes.


Assuntos
Genoma de Protozoário , Leishmania infantum/genética , Leishmania major/genética , Leishmania tropica/genética , Animais , Sequência de Bases , Quimera , Mapeamento Cromossômico , Cruzamentos Genéticos , Genótipo , Padrões de Herança , Insetos Vetores/parasitologia , Leishmania infantum/metabolismo , Leishmania major/metabolismo , Leishmania tropica/metabolismo , Meiose , Psychodidae/parasitologia , Recombinação Genética , Sequenciamento Completo do Genoma
9.
Proc Natl Acad Sci U S A ; 115(3): E506-E515, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29284754

RESUMO

Knowledge of viral diversity is expanding greatly, but many lineages remain underexplored. We surveyed RNA viruses in 52 cultured monoxenous relatives of the human parasite Leishmania (Crithidia and Leptomonas), as well as plant-infecting PhytomonasLeptomonas pyrrhocoris was a hotbed for viral discovery, carrying a virus (Leptomonas pyrrhocoris ostravirus 1) with a highly divergent RNA-dependent RNA polymerase missed by conventional BLAST searches, an emergent clade of tombus-like viruses, and an example of viral endogenization. A deep-branching clade of trypanosomatid narnaviruses was found, notable as Leptomonas seymouri bearing Narna-like virus 1 (LepseyNLV1) have been reported in cultures recovered from patients with visceral leishmaniasis. A deep-branching trypanosomatid viral lineage showing strong affinities to bunyaviruses was termed "Leishbunyavirus" (LBV) and judged sufficiently distinct to warrant assignment within a proposed family termed "Leishbunyaviridae" Numerous relatives of trypanosomatid viruses were found in insect metatranscriptomic surveys, which likely arise from trypanosomatid microbiota. Despite extensive sampling we found no relatives of the totivirus Leishmaniavirus (LRV1/2), implying that it was acquired at about the same time the Leishmania became able to parasitize vertebrates. As viruses were found in over a quarter of isolates tested, many more are likely to be found in the >600 unsurveyed trypanosomatid species. Viral loss was occasionally observed in culture, providing potentially isogenic virus-free lines enabling studies probing the biological role of trypanosomatid viruses. These data shed important insights on the emergence of viruses within an important trypanosomatid clade relevant to human disease.


Assuntos
Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Trypanosomatina/virologia , Animais , Infecções por Euglenozoa/parasitologia , Infecções por Euglenozoa/veterinária , Variação Genética , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Humanos , Filogenia
10.
Proc Natl Acad Sci U S A ; 114(5): E801-E810, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096392

RESUMO

In most natural infections or after recovery, small numbers of Leishmania parasites remain indefinitely in the host. Persistent parasites play a vital role in protective immunity against disease pathology upon reinfection through the process of concomitant immunity, as well as in transmission and reactivation, yet are poorly understood. A key question is whether persistent parasites undergo replication, and we devised several approaches to probe the small numbers in persistent infections. We find two populations of persistent Leishmania major: one rapidly replicating, similar to parasites in acute infections, and another showing little evidence of replication. Persistent Leishmania were not found in "safe" immunoprivileged cell types, instead residing in macrophages and DCs, ∼60% of which expressed inducible nitric oxide synthase (iNOS). Remarkably, parasites within iNOS+ cells showed normal morphology and genome integrity and labeled comparably with BrdU to parasites within iNOS- cells, suggesting that these parasites may be unexpectedly resistant to NO. Nonetheless, because persistent parasite numbers remain roughly constant over time, their replication implies that ongoing destruction likewise occurs. Similar results were obtained with the attenuated lpg2- mutant, a convenient model that rapidly enters a persistent state without inducing pathology due to loss of the Golgi GDP mannose transporter. These data shed light on Leishmania persistence and concomitant immunity, suggesting a model wherein a parasite reservoir repopulates itself indefinitely, whereas some progeny are terminated in antigen-presenting cells, thereby stimulating immunity. This model may be relevant to understanding immunity to other persistent pathogen infections.


Assuntos
Interações Hospedeiro-Parasita , Leishmania major/fisiologia , Leishmaniose Cutânea/imunologia , Animais , Feminino , Leishmaniose Cutânea/parasitologia , Macrófagos/parasitologia , Camundongos Endogâmicos C57BL
11.
Proc Natl Acad Sci U S A ; 114(5): E811-E819, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096399

RESUMO

The endogenous double-stranded RNA (dsRNA) virus Leishmaniavirus (LRV1) has been implicated as a pathogenicity factor for leishmaniasis in rodent models and human disease, and associated with drug-treatment failures in Leishmania braziliensis and Leishmania guyanensis infections. Thus, methods targeting LRV1 could have therapeutic benefit. Here we screened a panel of antivirals for parasite and LRV1 inhibition, focusing on nucleoside analogs to capitalize on the highly active salvage pathways of Leishmania, which are purine auxotrophs. Applying a capsid flow cytometry assay, we identified two 2'-C-methyladenosine analogs showing selective inhibition of LRV1. Treatment resulted in loss of LRV1 with first-order kinetics, as expected for random virus segregation, and elimination within six cell doublings, consistent with a measured LRV1 copy number of about 15. Viral loss was specific to antiviral nucleoside treatment and not induced by growth inhibitors, in contrast to fungal dsRNA viruses. Comparisons of drug-treated LRV1+ and LRV1- lines recapitulated LRV1-dependent pathology and parasite replication in mouse infections, and cytokine secretion in macrophage infections. Agents targeting Totiviridae have not been described previously, nor are there many examples of inhibitors acting against dsRNA viruses more generally. The compounds identified here provide a key proof-of-principle in support of further studies identifying efficacious antivirals for use in in vivo studies of LRV1-mediated virulence.


Assuntos
Antivirais/farmacologia , Leishmania braziliensis/virologia , Leishmania guyanensis/virologia , Leishmaniavirus/efeitos dos fármacos , Nucleosídeos/farmacologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Leishmaniose/parasitologia , Leishmaniavirus/genética , Leishmaniavirus/metabolismo , Camundongos Endogâmicos C57BL , Nucleotídeos/farmacologia
12.
Proc Natl Acad Sci U S A ; 114(19): 4987-4992, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28439019

RESUMO

The presence of the endogenous Leishmania RNA virus 1 (LRV1) replicating stably within some parasite species has been associated with the development of more severe forms of leishmaniasis and relapses after drug treatment in humans. Here, we show that the disease-exacerbatory role of LRV1 relies on type I IFN (type I IFNs) production by macrophages and signaling in vivo. Moreover, infecting mice with the LRV1-cured Leishmania guyanensis (LgyLRV1- ) strain of parasites followed by type I IFN treatment increased lesion size and parasite burden, quantitatively reproducing the LRV1-bearing (LgyLRV1+ ) infection phenotype. This finding suggested the possibility that exogenous viral infections could likewise increase pathogenicity, which was tested by coinfecting mice with L. guyanensis and lymphocytic choriomeningitis virus (LCMV), or the sand fly-transmitted arbovirus Toscana virus (TOSV). The type I IFN antiviral response increased the pathology of L. guyanensis infection, accompanied by down-regulation of the IFN-γ receptor normally required for antileishmanial control. Further, LCMV coinfection of IFN-γ-deficient mice promoted parasite dissemination to secondary sites, reproducing the LgyLRV1+ metastatic phenotype. Remarkably, LCMV coinfection of mice that had healed from L. guyanensis infection induced reactivation of disease pathology, overriding the protective adaptive immune response. Our findings establish that type I IFN-dependent responses, arising from endogenous viral elements (dsRNA/LRV1), or exogenous coinfection with IFN-inducing viruses, are able to synergize with New World Leishmania parasites in both primary and relapse infections. Thus, viral infections likely represent a significant risk factor along with parasite and host factors, thereby contributing to the pathological spectrum of human leishmaniasis.


Assuntos
Interferon Tipo I/imunologia , Leishmania guyanensis , Leishmaniose Mucocutânea/imunologia , Leishmaniavirus/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Febre por Flebótomos/imunologia , Vírus da Febre do Flebótomo Napolitano/imunologia , Animais , Coinfecção , Interferon Tipo I/genética , Leishmania guyanensis/imunologia , Leishmania guyanensis/virologia , Leishmaniose Mucocutânea/genética , Leishmaniose Mucocutânea/patologia , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/patologia , Camundongos , Camundongos Knockout , Febre por Flebótomos/genética , Febre por Flebótomos/patologia
13.
J Biol Chem ; 293(17): 6460-6469, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29511088

RESUMO

Leishmania is a widespread trypanosomatid protozoan parasite causing significant morbidity and mortality in humans. The endobiont dsRNA virus Leishmania RNA virus 1 (LRV1) chronically infects some strains, where it increases parasite numbers and virulence in murine leishmaniasis models, and correlates with increased treatment failure in human disease. Previously, we reported that 2'-C-methyladenosine (2CMA) potently inhibited LRV1 in Leishmania guyanensis (Lgy) and Leishmania braziliensis, leading to viral eradication at concentrations above 10 µm Here we probed the cellular mechanisms of 2CMA inhibition, involving metabolism, accumulation, and inhibition of the viral RNA-dependent RNA polymerase (RDRP). Activation to 2CMA triphosphate (2CMA-TP) was required, as 2CMA showed no inhibition of RDRP activity from virions purified on cesium chloride gradients. In contrast, 2CMA-TP showed IC50 values ranging from 150 to 910 µm, depending on the CsCl density of the virion (empty, ssRNA-, and dsRNA-containing). Lgy parasites incubated in vitro with 10 µm 2CMA accumulated 2CMA-TP to 410 µm, greater than the most sensitive RDRP IC50 measured. Quantitative modeling showed good agreement between the degree of LRV1 RDRP inhibition and LRV1 levels. These results establish that 2CMA activity is due to its conversion to 2CMA-TP, which accumulates to levels that inhibit RDRP and cause LRV1 loss. This attests to the impact of the Leishmania purine uptake and metabolism pathways, which allow even a weak RDRP inhibitor to effectively eradicate LRV1 at micromolar concentrations. Future RDRP inhibitors with increased potency may have potential therapeutic applications for ameliorating the increased Leishmania pathogenicity conferred by LRV1.


Assuntos
Trifosfato de Adenosina , Leishmania guyanensis/virologia , Leishmaniavirus/enzimologia , RNA Polimerase Dependente de RNA , Proteínas Virais , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Relação Dose-Resposta a Droga , Leishmania guyanensis/metabolismo , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo
14.
Proc Natl Acad Sci U S A ; 113(43): 11998-12005, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27790981

RESUMO

Many Leishmania (Viannia) parasites harbor the double-stranded RNA virus Leishmania RNA virus 1 (LRV1), which has been associated with increased disease severity in animal models and humans and with drug treatment failures in humans. Remarkably, LRV1 survives in the presence of an active RNAi pathway, which in many organisms controls RNA viruses. We found significant levels (0.4 to 2.5%) of small RNAs derived from LRV1 in both Leishmania braziliensis and Leishmania guyanensis, mapping across both strands and with properties consistent with Dicer-mediated cleavage of the dsRNA genome. LRV1 lacks cis- or trans-acting RNAi inhibitory activities, suggesting that virus retention must be maintained by a balance between RNAi activity and LRV1 replication. To tilt this balance toward elimination, we targeted LRV1 using long-hairpin/stem-loop constructs similar to those effective against chromosomal genes. LRV1 was completely eliminated, at high efficiency, accompanied by a massive overproduction of LRV1-specific siRNAs, representing as much as 87% of the total. For both L. braziliensis and L. guyanensis, RNAi-derived LRV1-negative lines were no longer able to induce a Toll-like receptor 3-dependent hyperinflammatory cytokine response in infected macrophages. We demonstrate in vitro a role for LRV1 in virulence of L. braziliensis, the Leishmania species responsible for the vast majority of mucocutaneous leishmaniasis cases. These findings establish a targeted method for elimination of LRV1, and potentially of other Leishmania viruses, which will facilitate mechanistic dissection of the role of LRV1-mediated virulence. Moreover, our data establish a third paradigm for RNAi-viral relationships in evolution: one of balance rather than elimination.


Assuntos
Antiprotozoários/farmacologia , Leishmaniose Mucocutânea/tratamento farmacológico , Leishmaniavirus/efeitos dos fármacos , Oligorribonucleotídeos Antissenso/farmacologia , RNA de Cadeia Dupla/antagonistas & inibidores , RNA Viral/antagonistas & inibidores , Animais , Antiprotozoários/química , Antiprotozoários/metabolismo , Expressão Gênica , Sequências Repetidas Invertidas , Leishmania braziliensis/patogenicidade , Leishmania braziliensis/virologia , Leishmania guyanensis/patogenicidade , Leishmania guyanensis/virologia , Leishmaniose Mucocutânea/parasitologia , Leishmaniose Mucocutânea/virologia , Leishmaniavirus/genética , Leishmaniavirus/metabolismo , Macrófagos/parasitologia , Macrófagos/virologia , Camundongos , Oligorribonucleotídeos Antissenso/genética , Oligorribonucleotídeos Antissenso/metabolismo , Interferência de RNA/efeitos dos fármacos , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Simbiose/genética , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Replicação Viral/efeitos dos fármacos
15.
J Biol Chem ; 292(25): 10696-10708, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28465349

RESUMO

To survive in its sand fly vector, the trypanosomatid protozoan parasite Leishmania first attaches to the midgut to avoid excretion, but eventually it must detach for transmission by the next bite. In Leishmania major strain Friedlin, this is controlled by modifications of the stage-specific adhesin lipophosphoglycan (LPG). During differentiation to infective metacyclics, d-arabinopyranose (d-Arap) caps the LPG side-chain galactose residues, blocking interaction with the midgut lectin PpGalec, thereby leading to parasite detachment and transmission. Previously, we characterized two closely related L. major genes (FKP40 and AFKP80) encoding bifunctional proteins with kinase/pyrophosphorylase activities required for salvage and conversion of l-fucose and/or d-Arap into the nucleotide-sugar substrates required by glycosyltransferases. Whereas only AFKP80 yielded GDP-d-Arap from exogenous d-Arap, both proteins were able to salvage l-fucose to GDP-fucose. We now show that Δafkp80- null mutants ablated d-Arap modifications of LPG as predicted, whereas Δfkp40- null mutants resembled wild type (WT). Fucoconjugates had not been reported previously in L. major, but unexpectedly, we were unable to generate fkp40-/afkp80- double mutants, unless one of the A/FKPs was expressed ectopically. To test whether GDP-fucose itself was essential for Leishmania viability, we employed "genetic metabolite complementation." First, the trypanosome de novo pathway enzymes GDP-mannose dehydratase (GMD) and GDP-fucose synthetase (GMER) were expressed ectopically; from these cells, the Δfkp40-/Δafkp80- double mutant was now readily obtained. As expected, the Δfkp40-/Δafkp80-/+TbGMD-GMER line lacked the capacity to generate GDP-Arap, while synthesizing abundant GDP-fucose. These results establish a requirement for GDP-fucose for L. major viability and predict the existence of an essential fucoconjugate(s).


Assuntos
Teste de Complementação Genética/métodos , Guanosina Difosfato Fucose , Leishmania major , Proteínas de Protozoários , Guanosina Difosfato Fucose/genética , Guanosina Difosfato Fucose/metabolismo , Leishmania major/enzimologia , Leishmania major/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
16.
PLoS Pathog ; 12(9): e1005852, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27658195

RESUMO

Cutaneous leishmaniasis has various outcomes, ranging from self-healing reddened papules to extensive open ulcerations that metastasise to secondary sites and are often resistant to standard therapies. In the case of L. guyanensis (L.g), about 5-10% of all infections result in metastatic complications. We recently showed that a cytoplasmic virus within L.g parasites (LRV1) is able to act as a potent innate immunogen, worsening disease outcome in a murine model. In this study, we investigated the immunophenotype of human patients infected by L.g and found a significant association between the inflammatory cytokine IL-17A, the presence of LRV1 and disease chronicity. Further, IL-17A was inversely correlated to the protective cytokine IFN-γ. These findings were experimentally corroborated in our murine model, where IL-17A produced in LRV1+ L.g infection contributed to parasite virulence and dissemination in the absence of IFN-γ. Additionally, IL-17A inhibition in mice using digoxin or SR1001, showed therapeutic promise in limiting parasite virulence. Thus, this murine model of LRV1-dependent infectious metastasis validated markers of disease chronicity in humans and elucidated the immunologic mechanism for the dissemination of Leishmania parasites to secondary sites. Moreover, it confirms the prognostic value of LRV1 and IL-17A detection to prevent metastatic leishmaniasis in human patients.

17.
Mol Microbiol ; 101(4): 559-74, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27125778

RESUMO

The genomes of kinetoplastids are organized into polycistronic gene clusters that are flanked by the modified DNA base J. Previous work has established a role of base J in promoting RNA polymerase II termination in Leishmania spp. where the loss of J leads to termination defects and transcription into adjacent gene clusters. It remains unclear whether these termination defects affect gene expression and whether read through transcription is detrimental to cell growth, thus explaining the essential nature of J. We now demonstrate that reduction of base J at specific sites within polycistronic gene clusters in L. major leads to read through transcription and increased expression of downstream genes in the cluster. Interestingly, subsequent transcription into the opposing polycistronic gene cluster does not lead to downregulation of sense mRNAs. These findings indicate a conserved role for J regulating transcription termination and expression of genes within polycistronic gene clusters in trypanosomatids. In contrast to the expectations often attributed to opposing transcription, the essential nature of J in Leishmania spp. is related to its role in gene repression rather than preventing transcriptional interference resulting from read through and dual strand transcription.


Assuntos
Glucosídeos/genética , Leishmania major/genética , RNA Polimerase II/metabolismo , Uracila/análogos & derivados , Regulação da Expressão Gênica , Glucosídeos/metabolismo , Leishmania major/enzimologia , Leishmania major/metabolismo , Família Multigênica , RNA Polimerase II/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/genética , Uracila/metabolismo
18.
J Mol Evol ; 84(2-3): 104-115, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28210761

RESUMO

We screened the genomes of a broad panel of kinetoplastid protists for genes encoding proteins associated with the RNA interference (RNAi) system using probes from the Argonaute (AGO1), Dicer1 (DCL1), and Dicer2 (DCL2) genes of Leishmania brasiliensis and Crithidia fasciculata. We identified homologs for all the three of these genes in the genomes of a subset of these organisms. However, several of these organisms lacked evidence for any of these genes, while others lacked only DCL2. The open reading frames encoding these putative proteins were structurally analyzed in silico. The alignments indicated that the genes are homologous with a high degree of confidence, and three-dimensional structural models strongly supported a functional relationship to previously characterized AGO1, DCL1, and DCL2 proteins. Phylogenetic analysis of these putative proteins showed that these genes, when present, evolved in parallel with other nuclear genes, arguing that the RNAi system genes share a common progenitor, likely across all Kinetoplastea. In addition, the genome segments bearing these genes are highly conserved and syntenic, even among those taxa in which they are absent. However, taxa in which these genes are apparently absent represent several widely divergent branches of kinetoplastids, arguing that these genes were independently lost at least six times in the evolutionary history of these organisms. The mechanisms responsible for the apparent coordinate loss of these RNAi system genes independently in several lineages of kinetoplastids, while being maintained in other related lineages, are currently unknown.


Assuntos
Crithidia fasciculata/genética , DNA de Cinetoplasto/genética , Leishmania braziliensis/genética , Trypanosomatina/genética , Sequência de Aminoácidos/genética , Proteínas Argonautas/genética , Evolução Biológica , DNA de Cinetoplasto/metabolismo , Eucariotos/genética , Evolução Molecular , Genoma/genética , Filogenia , Interferência de RNA/fisiologia , Ribonuclease III/genética , Alinhamento de Sequência/métodos , Sintenia/genética
19.
Proc Natl Acad Sci U S A ; 111(47): 16808-13, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385616

RESUMO

Genetic exchange between Leishmania major strains during their development in the sand fly vector has been experimentally shown. To investigate the possibility of genetic exchange between different Leishmania species, a cutaneous strain of L. major and a visceral strain of Leishmania infantum, each bearing a different drug-resistant marker, were used to coinfect Lutzomyia longipalpis sand flies. Eleven double-drug-resistant progeny clones, each the product of an independent mating event, were generated and submitted to genotype and phenotype analyses. The analysis of multiple allelic markers across the genome suggested that each progeny clone inherited at least one full set of chromosomes from each parent, with loss of heterozygosity at some loci, and uniparental retention of maxicircle kinetoplast DNA. Hybrids with DNA contents of approximately 2n, 3n, and 4n were observed. In vivo studies revealed clear differences in the ability of the hybrids to produce pathology in the skin or to disseminate to and grow in the viscera, suggesting polymorphisms and differential inheritance of the gene(s) controlling these traits. The studies, to our knowledge, represent the first experimental confirmation of cross-species mating in Leishmania, opening the way toward genetic linkage analysis of important traits and providing strong evidence that genetic exchange is responsible for the generation of the mixed-species genotypes observed in natural populations.


Assuntos
Insetos Vetores/genética , Leishmania/genética , Psychodidae/parasitologia , Animais , Leishmania/classificação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
20.
J Infect Dis ; 213(1): 112-21, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26123565

RESUMO

Cutaneous and mucosal leishmaniasis, caused in South America by Leishmania braziliensis, is difficult to cure by chemotherapy (primarily pentavalent antimonials [Sb(V)]). Treatment failure does not correlate well with resistance in vitro, and the factors responsible for treatment failure in patients are not well understood. Many isolates of L. braziliensis (>25%) contain a double-stranded RNA virus named Leishmaniavirus 1 (LRV1), which has also been reported in Leishmania guyanensis, for which an association with increased pathology, metastasis, and parasite replication was found in murine models. Here we probed the relationship of LRV1 to drug treatment success and disease in 97 L. braziliensis-infected patients from Peru and Bolivia. In vitro cultures were established, parasites were typed as L. braziliensis, and the presence of LRV1 was determined by reverse transcription-polymerase chain reaction, followed by sequence analysis. LRV1 was associated significantly with an increased risk of treatment failure (odds ratio, 3.99; P = .04). There was no significant association with intrinsic Sb(V) resistance among parasites, suggesting that treatment failure arises from LRV1-mediated effects on host metabolism and/or parasite survival. The association of LRV1 with clinical drug treatment failure could serve to guide more-effective treatment of tegumentary disease caused by L. braziliensis.


Assuntos
Leishmania braziliensis/virologia , Leishmaniose Mucocutânea/tratamento farmacológico , Leishmaniose Mucocutânea/virologia , Leishmaniavirus , Antimônio/uso terapêutico , Antiprotozoários/uso terapêutico , Bolívia/epidemiologia , Estudos de Coortes , Resistência a Medicamentos , Humanos , Leishmaniose Mucocutânea/epidemiologia , Leishmaniose Mucocutânea/parasitologia , Leishmaniavirus/classificação , Leishmaniavirus/genética , Peru/epidemiologia , Falha de Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA