Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 140, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944935

RESUMO

Downy mildew disease of sunflower, caused by the obligate biotrophic oomycete Plasmopara halstedii, can have significant economic impact on sunflower cultivation. Using high-throughput whole transcriptome sequencing, four developmental phases in 16 time-points of Pl. halstedii infecting Helianthus annuus were investigated. With the aim of identifying potential functional and regulatory motifs upstream of co-expressed genes, time-series derived gene expression profiles were clustered based on their time-course similarity, and their upstream regulatory gene sequences were analyzed here. Several conserved motifs were found upstream of co-expressed genes, which might be involved in binding specific transcription factors. Such motifs were also found associated with virulence related genes, and could be studied on a genetically tractable model to clarify, if these are involved in regulating different stages of pathogenesis.


Assuntos
Helianthus , Oomicetos , Peronospora , Helianthus/genética , Fatores de Tempo , Oomicetos/genética , Sequência Conservada , Doenças das Plantas/genética
2.
Theor Appl Genet ; 129(5): 977-90, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26849238

RESUMO

KEY MESSAGE: First report for the resynthesis of Brassica napus by recombining A and C genome from B. juncea and B. carinata , respectively. Also documents B genome introgressions in resynthesized B. napus. Resynthesis of Brassica napus (AACC) was achieved by hybridizing Brassica juncea (AABB) with Brassica carinata (BBCC). This was facilitated by spontaneous chromosome doubling in the F1 hybrid (ABBC) to yield octaploid (AABBBBCC), elimination of extra B genome chromosomes in the resulting octaploid and in subsequent selfed generations, aided with directed selection for fertile plants having B. napus morphology. Twenty-five plants with varying degrees of resemblance to natural B. napus were identified from 17 A5 progenies and assayed for cytogenetic stability and genetic diversity. Majority of these plants, except six (2n = 38) were hyperploids (2n = 40-56). The six plants with 2n = 38 were designated as derived B. napus types. These showed an expected meiotic configuration of 19II at metaphase-I, with 19-19 distribution at anaphase-I. Genotyping based on A and C genome specific primers confirmed genetic identity of six derived (2n = 38) B. napus plants with natural types whereas genotyping with B genome specific primers indicated introgression of B genome segments. This was also confirmed by genomic in situ hybridization (GISH). Strong signals of B genome probe were detected, proving hitherto unreported genetic exchanges between B and A/C chromosomes. These introgressions possibly occurred en route five generations of selfing. Derived plants yielded fertile hybrids in crosses with natural B. napus var. GSC 6. The selfed derived plants as evaluated in A6 plant to progeny rows were morphologically similar to natural B. napus, and meiotically stable. Agronomic assessment of these progenies revealed variation for key morpho-physiological traits. Of special interest were the progenies with plants having oil content exceeding 47% as against about 39-41% in existing cultivars.


Assuntos
Brassica napus/genética , Hibridização Genética , Melhoramento Vegetal/métodos , Cromossomos de Plantas , DNA de Plantas/genética , Variação Genética , Genoma de Planta , Genótipo , Hibridização In Situ , Mostardeira/genética , Poliploidia
3.
Theor Appl Genet ; 129(6): 1153-66, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26913722

RESUMO

KEY MESSAGE: C genome chromosome substitution lines of B. juncea constitute a key genetic resource for increased genetic diversity and hybrid performance. C genome chromosome substitution lines were found in the progenies of derived B. juncea (2n = 36; AABB), synthesized through hybridization between B. napus and B. carinata. These were originally recognized based on the morphology and genomic in situ hybridization. Genotyping using the Brassica Illumina 60K Infinium SNP array confirmed the presence of C genome chromosomes in a large number of derived B. juncea genotypes. Three whole chromosome substitutions and 13 major C genome fragment substitutions were identified. Fragment substitutions were primarily terminal, but intercalary substitution(s) involving chromosome C1 and C2 were identified in three genotypes. The size of substituted C genome fragments varied from 0.04 Mbp (C1) to 64.85 Mbp (C3). In terms of proportions, these ranged from 0.10 % (C1) to 100 % (C1, C3 and C7) of the substituted chromosome. SSR genotyping with B genome specific primers suggested that substituting C genome chromosome(s) are likely to have replaced B genome chromosome(s). C1 was the most common substituting chromosome while substituted B chromosome seemed random. Study of the phenotypic traits underlined the importance of the substitution lines (especially of chromosome C1) for conferring superior trait performance (main shoot length and pods on the main shoot). High heterosis was also indicated in hybrid combinations of substitution lines with natural B. juncea. These substitution genotypes constituted a valuable resource for targeted gene transfer and QTL identification.


Assuntos
Cromossomos de Plantas/genética , Variação Genética , Genoma de Planta , Hibridização Genética , Mostardeira/genética , DNA de Plantas/genética , Genótipo , Vigor Híbrido , Hibridização in Situ Fluorescente , Fenótipo , Polimorfismo de Nucleotídeo Único
4.
G3 (Bethesda) ; 7(1): 77-86, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27821632

RESUMO

Brassica napus introgression lines (ILs), having B-genome segments from B. carinata, were assessed genetically for extent of introgression and phenotypically for siliqua shatter resistance. Introgression lines had 7-9% higher DNA content, were meiotically stable, and had almost normal pollen fertility/seed set. Segment introgressions were confirmed by fluorescent genomic in situ hybridization (fl-GISH), SSR analyses, and SNP studies. Genotyping with 48 B-genome specific SSRs detected substitutions from B3, B4, B6, and B7 chromosomes on 39 of the 69 ILs whereas SNP genotyping detected a total of 23 B-segments (≥3 Mb) from B4, B6, and B7 introgressed into 10 of the 19 (C1, C2, C3, C5, C6, C8, C9, A3, A9, A10) chromosomes in 17 ILs. The size of substitutions varied from 3.0 Mb on chromosome A9 (IL59) to 42.44 Mb on chromosome C2 (IL54), ranging from 7 to 83% of the recipient chromosome. Average siliqua strength in ILs was observed to be higher than that of B. napus parents (2.2-6.0 vs. 1.9-4.0 mJ) while siliqua strength in some of the lines was almost equal to that of the donor parent B. carinata (6.0 vs.7.2 mJ). These ILs, with large chunks of substituted B-genome, can prove to be a useful prebreeding resource for germplasm enhancement in B. napus, especially for siliqua shatter resistance.


Assuntos
Brassica napus/genética , Genoma de Planta/genética , Hibridização Genética , Cromossomos de Plantas/genética , Genótipo , Hibridização in Situ Fluorescente , Fenótipo , Melhoramento Vegetal , Ploidias , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA