Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Immunity ; 54(2): 308-323.e6, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33421362

RESUMO

Th17 cells are known to exert pathogenic and non-pathogenic functions. Although the cytokine transforming growth factor ß1 (TGF-ß1) is instrumental for Th17 cell differentiation, it is dispensable for generation of pathogenic Th17 cells. Here, we examined the T cell-intrinsic role of Activin-A, a TGF-ß superfamily member closely related to TGF-ß1, in pathogenic Th17 cell differentiation. Activin-A expression was increased in individuals with relapsing-remitting multiple sclerosis and in mice with experimental autoimmune encephalomyelitis. Stimulation with interleukin-6 and Activin-A induced a molecular program that mirrored that of pathogenic Th17 cells and was inhibited by blocking Activin-A signaling. Genetic disruption of Activin-A and its receptor ALK4 in T cells impaired pathogenic Th17 cell differentiation in vitro and in vivo. Mechanistically, extracellular-signal-regulated kinase (ERK) phosphorylation, which was essential for pathogenic Th17 cell differentiation, was suppressed by TGF-ß1-ALK5 but not Activin-A-ALK4 signaling. Thus, Activin-A drives pathogenic Th17 cell differentiation, implicating the Activin-A-ALK4-ERK axis as a therapeutic target for Th17 cell-related diseases.


Assuntos
Ativinas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Inflamação Neurogênica/imunologia , Células Th17/imunologia , Fator de Crescimento Transformador beta/metabolismo , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Ativinas/genética , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Transdução de Sinais
2.
Gene Ther ; 25(7): 454-472, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30190607

RESUMO

Lentiviral vector mobilization following HIV-1 infection of vector-transduced cells poses biosafety risks to vector-treated patients and their communities. The self-inactivating (SIN) vector design has reduced, however, not abolished mobilization of integrated vector genomes. Furthermore, an earlier study demonstrated the ability of the major product of reverse transcription, a circular SIN HIV-1 vector comprising a single- long terminal repeat (LTR) to support production of high vector titers. Here, we demonstrate that configuring the internal vector expression cassette in opposite orientation to the LTRs abolishes mobilization of SIN vectors. This additional SIN mechanism is in part premised on induction of host PKR response to double-stranded RNAs comprised of mRNAs transcribed from cryptic transcription initiation sites around 3'SIN-LTR's and the vector internal promoter. As anticipated, PKR response following transfection of opposite orientation vectors, negatively affects their titers. Importantly, shRNA-mediated knockdown of PKR rendered titers of SIN HIV-1 vectors comprising opposite orientation expression cassettes comparable to titers of conventional SIN vectors. High-titer vectors carrying an expression cassette in opposite orientation to the LTRs efficiently delivered and maintained high levels of transgene expression in mouse livers. This study establishes opposite orientation expression cassettes as an additional PKR-dependent SIN mechanism that abolishes vector mobilization from integrated and episomal SIN lentiviral vectors.


Assuntos
Vetores Genéticos/genética , Infecções por HIV/genética , Repetição Terminal Longa de HIV/genética , Lentivirus/genética , Animais , Vetores Genéticos/uso terapêutico , Genoma Viral/genética , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/genética , Humanos , Camundongos , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico
3.
J Neurosci Res ; 94(11): 1152-68, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27638600

RESUMO

Currently, presymtomatic hematopoietic stem and progenitor cell transplantation (HSPCT) is the only therapeutic modality that alleviates Krabbe's disease (KD)-induced central nervous system damage. However, all HSPCT-treated patients exhibit severe deterioration in peripheral nervous system function characterized by major motor and expressive language pathologies. We hypothesize that a combination of several mechanisms contribute to this phenomenon, including 1) nonoptimal conditioning protocols with consequent inefficient engraftment and biodistribution of donor-derived cells and 2) insufficient uptake of donor cell-secreted galactocerebrosidease (GALC) secondary to a naturally low expression level of the cation-independent mannose 6-phosphate-receptor (CI-MPR). We have characterized the effects of a busulfan (Bu) based conditioning regimen on the efficacy of HSPCT in prolonging twi mouse average life span. There was no correlation between the efficiency of bone marrow engraftment of donor cells and twi mouse average life span. HSPCT prolonged the average life span of twi mice, which directly correlated with the aggressiveness of the Bu-mediated conditioning protocols. HSPC transduced with lentiviral vectors carrying the GALC cDNA under control of cell-specific promoters were efficiently engrafted in twi mouse bone marrow. To facilitate HSPCT-mediated correction of GALC deficiency in target cells expressing low levels of CI-MPR, a novel GALC fusion protein including the ApoE1 receptor was developed. Efficient cellular uptake of the novel fusion protein was mediated by a mannose-6-phosphate-independent mechanism. The novel findings described here elucidate some of the cellular mechanisms that impede the cure of KD patients by HSPCT and concomitantly open new directions to enhance the therapeutic efficacy of HSPCT protocols for KD. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.


Assuntos
Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Leucodistrofia de Células Globoides/terapia , Animais , Antígenos CD/metabolismo , Antimetabólitos/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Bussulfano/farmacologia , Linhagem Celular Transformada , Ciclosserina/uso terapêutico , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Terapia Genética/tendências , Vetores Genéticos/fisiologia , Transplante de Células-Tronco Hematopoéticas/tendências , Humanos , Imunossupressores/uso terapêutico , Leucodistrofia de Células Globoides/tratamento farmacológico , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patologia , Receptor IGF Tipo 2/metabolismo , Receptores de Somatomedina/metabolismo
4.
J Virol ; 88(5): 2810-20, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352469

RESUMO

UNLABELLED: Atypical porcine reproductive and respiratory syndrome (PRRS) caused by highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) is characterized by high fever and high mortality. However, the mechanism underlying the fever induction is still unknown. Prostaglandin E2 (PGE2), synthesized by cyclooxygenase type 1/2 (COX-1/2) enzymes, is essential for inducing fever. In this study, we found that PGE2, together with COX-1, was significantly elevated by HP-PRRSV. We subsequently demonstrated that extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphorylated ERK (p-ERK) were the key nodes to trigger COX-1 expression after HP-PRRSV infection. Furthermore, we proved the direct binding of p-C/EBP-ß to the COX-1 promoter by luciferase reporter and chromatin immunoprecipitation assays. In addition, silencing of C/EBP-ß remarkably impaired the enhancement of COX-1 production induced by HP-PRRSV infection. Taken together, our results indicate that HP-PPRSV elicits the expression of COX-1 through the ERK1/2-p-C/EBP-ß signaling pathway, resulting in the increase of PGE2, which might be the cause of high fever in infected pigs. Our findings might provide new insights into the molecular mechanisms underlying the pathogenesis of HP-PRRSV infection. IMPORTANCE: The atypical PRRS caused by HP-PRRSV was characterized by high fever, high morbidity, and high mortality in pigs of all ages, yet how HP-PRRSV induces high fever in pigs remains unknown. In the present study, we found out that HP-PRRSV infection could increase PGE2 production by upregulation of COX-1, and we subsequently characterized the underlying mechanisms about how HP-PRRSV enhances COX-1 production. PGE2 plays a critical role in inducing high temperature in hosts during pathogen infections. Thus, our findings here could help us have a better understanding of HP-PRRSV pathogenesis.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Ciclo-Oxigenase 1/metabolismo , Dinoprostona/biossíntese , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Transdução de Sinais , Animais , Sequência de Bases , Clonagem Molecular , Ciclo-Oxigenase 1/genética , Dados de Sequência Molecular , Fosforilação , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Regiões Promotoras Genéticas , Elementos de Resposta , Suínos
5.
Nat Aging ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39443728

RESUMO

Given its central role in immune aging, it is important to identify the regulators of thymic involution. While conventional programmed cell death has a fundamental role in thymocyte development, how cell death pathways contribute to thymic involution are unclear. In this study, we found that CD4+CD8+ double-positive (DP) thymocytes acquired the characteristics of senescence in aged mice undergoing thymic involution, while expression of the m6A methyltransferase-like protein 3 (METTL3), which is enriched in DP cells from young mice, decreased with aging. By conditionally deleting METTL3 in T cells, we revealed a critical role for METTL3 in DP cell survival and in restraining the features of aging in DP thymocytes by preventing ferroptosis signaling through glutathione peroxidase 4. Mechanistically, glutathione peroxidase 4 was maintained by METTL3 at the translational level, independently of its methyltransferase activity. Furthermore, we found that pharmacological inhibition of ferroptosis promoted DP cell survival and attenuated the features of aging in DP thymocytes. These findings uncover a role for METTL3-regulated ferroptosis in thymic involution and identify strategies to restore thymic function.

6.
Clin Vaccine Immunol ; 22(8): 883-95, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26018534

RESUMO

Caveolin-1 (Cav-1), the principal structural protein of caveolae, has been implicated as a regulator of virus-host interactions. Several viruses exploit caveolae to facilitate viral infections. However, the roles of Cav-1 in herpes simplex virus 1 (HSV-1) infection have not fully been elucidated. Here, we report that Cav-1 downregulates the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) in dendritic cells (DCs) during HSV-1 infection. As a result, Cav-1 deficiency led to an accelerated elimination of virus and less lung pathological change following HSV-1 infection. This protection was dependent on iNOS and NO production in DCs. Adoptive transfer of DCs with Cav-1 knockdown was sufficient to confer the protection to wild-type (WT) mice. In addition, Cav-1 knockout (KO) (Cav-1(-/-)) mice treated with an iNOS inhibitor exhibited significantly reduced survival compared to that of the nontreated controls. We found that Cav-1 colocalized with iNOS and HSV-1 in caveolae in HSV-1-infected DCs, suggesting their interaction. Taken together, our results identified Cav-1 as a novel regulator utilized by HSV-1 to evade the host antiviral response mediated by NO production. Therefore, Cav-1 might be a valuable target for therapeutic approaches against herpesvirus infections.


Assuntos
Caveolina 1/metabolismo , Células Dendríticas/imunologia , Herpesvirus Humano 1/imunologia , Interações Hospedeiro-Patógeno , Tolerância Imunológica , Pulmão/imunologia , Animais , Feminino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Análise de Sobrevida
7.
Virology ; 468-470: 96-103, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25155198

RESUMO

Protein kinase C (PKC) that transduces signals to modulate a wide range of cellular functions has been shown to regulate a number of viral infections. Herein, we showed that inhibition of PKC with the PKC inhibitor GF109203X significantly impaired porcine reproductive and respiratory syndrome virus (PRRSV) replication. Inhibition of PKC led to virus yield reduction, which was associated with decreased viral RNA synthesis and lowered virus protein expression. And this inhibitory effect by PKC inhibitor was shown to occur at the early stage of PRRSV infection. Subsequently, we found that PRRSV infection activated PKCδ in PAMs and knockdown of PKCδ by small interfering RNA (siRNA) suppressed PRRSV replication, suggesting that novel PKCδ may play an important factor in PRRSV replication. Taken together, these data imply that PKC is involved in PRRSV infection and beneficial to PRRSV replication, extending our understanding of PRRSV replication.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Proteína Quinase C-delta/metabolismo , Replicação Viral/fisiologia , Animais , Células Cultivadas , Regulação Enzimológica da Expressão Gênica , Indóis/farmacologia , Macrófagos Alveolares/virologia , Maleimidas/farmacologia , Proteína Quinase C-delta/antagonistas & inibidores , RNA Viral/genética , RNA Viral/metabolismo , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA