Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2404142, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148197

RESUMO

As of the present time, the in-depth study of the structure-activity relationship between electronic configuration and CO2 photoreduction performance is often overlooked. Herein, a series of Cux species modified CeO2 nanodots are constructed in situ by flame spray pyrolysis (FSP) to achieve an efficient photocatalytic CO2-to-C2 conversion with an electron utilization of up to 142.5 µmol g-1. Through an in-depth study of the electronic behavior and catalytic pathways, it is found that the Cu0/Cu+ species in the coexistence state of Cu0/Cu+/Cu2+ can optimize the energy band structure, photocurrent stability, and provide a kinetic basis for the active surface catalytic reaction process that requires the conversion of multiple electrons into C2 products, which ultimately enhances the CO2-to-C2H6 photoreduction by 3.8-fold and that for CO2-to-C2H4 photoreduction by 5.2-fold. Besides, the Cu2+ species in the coexistence state of Cu0/Cu+/Cu2+ are able to regulate the electronic behavior and the choice of the catalytic pathway, enabling the transitions between CO2-to-C2H6 and CO2-to-C2H4. This work indicates that electronic configuration optimization is an effective strategy to significantly enhance the CO2 photoreduction performance and provides new ideas for the design and synthesis of high-performance heterostructure photocatalysts.

2.
Small ; 15(49): e1904613, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31639269

RESUMO

Understanding the nanoscale friction properties of 2D materials and further manipulating their friction behaviors is of great significance for the development of various micro/nanodevices. Recent studies, taking advantage of the close relationship between friction and surface charges, use an external out-of-plane electric field to control the interfacial friction. Nevertheless, friction increases with the application of the out-of-plane electric field in most cases. Here, an in-plane potential gradient is applied for the investigation of the contribution of electric charges to friction on the surfaces of 2D materials. Experimental results show that the friction between an atomic force microscope tip and the flakes of 2D materials decreases with the application of the in-plane potential gradient, and the higher the potential gradient, the greater the friction decrease. By comparing the in situ atomic-level stick-slip maps before and after the application of the in-plane potential gradient, it is proposed that the promotion of low friction dissipative motion during the stick-slip process owing to the presence of the potential gradient gives rise to the friction reduction. These results not only help to reveal the origin of friction, but also provide a novel way to manipulate friction through an electrically-controlled sliding process.

3.
Nano Lett ; 18(9): 5618-5627, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30067373

RESUMO

Due to its innate instability, the degradation of black phosphorus (BP) with oxygen and moisture was considered the obstacle for its application in ambient conditions. Here, a friction force reduced by about 50% at the degraded area of the BP nanosheets was expressly observed using atomic force microscopy due to the produced phosphorus oxides during degradation. Energy-dispersive spectrometer mapping analyses corroborated the localized concentration of oxygen on the degraded BP flake surface where friction reduction was observed. Water absorption was discovered to be essential for the degraded characteristic as well as the friction reduction behavior of BP sheets. The combination of water molecules as well as the resulting chemical groups (P-OH bonds) that are formed on the oxidized surface may account for the friction reduction of degraded BP flakes. It is indicated that, besides its layered structure, the ambient degradation of BP significantly favors its lubrication behavior.

4.
ACS Appl Mater Interfaces ; 12(6): 7717-7726, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31944101

RESUMO

The interfaces between two-dimensional (2D) materials and the silicon dioxide (SiO2)/silicon (Si) substrate, generally considered as a solid-solid mechanical contact, have been especially emphasized for the structure design and the property optimization in microsystems and nanoengineering. The basic understanding of the interfacial structure and dynamics for 2D material-based systems still remains one of the inevitable challenges ahead. Here, an interfacial mobile water layer is indicated to insert into the interface of the degraded black phosphorus (BP) flake and the SiO2/Si substrate owing to the induced hydroxyl groups during the ambient degradation. A super-slippery degraded BP/SiO2 interface was observed with the interfacial shear stress (ISS) experimentally evaluated as low as 0.029 ± 0.004 MPa, being comparable to the ISS values of incommensurate rigid crystalline contacts. In-depth investigation of the interfacial structure through nuclear magnetic resonance spectroscopy and in situ X-ray photoelectron spectroscopy depth profiling revealed that the interfacial liquid water was responsible for the super-slippery BP/SiO2 interface with extremely low shear stress. This finding clarifies the strong interactions between degraded BP and water molecules, which supports the potential wider applications of the few-layer BP nanomaterial in biological lubrication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA