Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Cell ; 77(3): 586-599.e6, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31810759

RESUMO

Streptomyces are our primary source of antibiotics, produced concomitantly with the transition from vegetative growth to sporulation in a complex developmental life cycle. We previously showed that the signaling molecule c-di-GMP binds BldD, a master repressor, to control initiation of development. Here we demonstrate that c-di-GMP also intervenes later in development to control differentiation of the reproductive hyphae into spores by arming a novel anti-σ (RsiG) to bind and sequester a sporulation-specific σ factor (σWhiG). We present the structure of the RsiG-(c-di-GMP)2-σWhiG complex, revealing an unusual, partially intercalated c-di-GMP dimer bound at the RsiG-σWhiG interface. RsiG binds c-di-GMP in the absence of σWhiG, employing a novel E(X)3S(X)2R(X)3Q(X)3D motif repeated on each helix of a coiled coil. Further studies demonstrate that c-di-GMP is essential for RsiG to inhibit σWhiG. These findings reveal a newly described control mechanism for σ-anti-σ complex formation and establish c-di-GMP as the central integrator of Streptomyces development.


Assuntos
GMP Cíclico/análogos & derivados , Fator sigma/metabolismo , Streptomyces/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , GMP Cíclico/metabolismo , GMP Cíclico/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Domínios Proteicos , RNA Bacteriano/metabolismo , Esporos Bacterianos/metabolismo , Streptomyces/genética
2.
J Ind Microbiol Biotechnol ; 48(9-10)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34100946

RESUMO

For over a decade, Streptomyces venezuelae has been used to study the molecular mechanisms that control morphological development in streptomycetes and is now a well-established model strain. Its rapid growth and ability to sporulate in a near-synchronised manner in liquid culture, unusual among streptomycetes, greatly facilitates the application of modern molecular techniques such as ChIP-seq and RNA-seq, as well as time-lapse fluorescence imaging of the complete Streptomyces life cycle. Here we describe a high-quality genome sequence of our isolate of the strain (Northern Regional Research Laboratory [NRRL] B-65442) consisting of an 8.2 Mb chromosome and a 158 kb plasmid, pSVJI1, which had not been reported previously. Surprisingly, while NRRL B-65442 yields green spores on MYM agar, the American Type Culture Collection (ATCC) type strain 10712 (from which NRRL B-65442 was derived) produces grey spores. While comparison of the genome sequences of the two isolates revealed almost total identity, it did reveal a single nucleotide substitution in a gene, vnz_33525, involved in spore pigment biosynthesis. Replacement of the vnz_33525 allele of ATCC 10712 with that of NRRL B-65442 resulted in green spores, explaining the discrepancy in spore pigmentation. We also applied CRISPR-Cas9 to delete the essential parB of pSVJI1 to cure the plasmid from the strain without obvious phenotypic consequences.


Assuntos
Genoma Bacteriano , Streptomyces , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/citologia , Streptomyces/genética
3.
Mol Microbiol ; 112(2): 461-481, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30907454

RESUMO

The extracytoplasmic function (ECF) σ factor, σE , is a key regulator of the cell envelope stress response in Streptomyces coelicolor. Although its role in maintaining cell wall integrity has been known for over a decade, a comprehensive analysis of the genes under its control has not been undertaken. Here, using a combination of chromatin immunoprecipitation-sequencing (ChIP-seq), microarray transcriptional profiling and bioinformatic analysis, we attempt to define the σE regulon. Approximately half of the genes identified encode proteins implicated in cell envelope function. Seventeen novel targets were validated by S1 nuclease mapping or in vitro transcription, establishing a σE -binding consensus. Subsequently, we used bioinformatic analysis to look for conservation of the σE target promoters identified in S. coelicolor across 19 Streptomyces species. Key proteins under σE control across the genus include the actin homolog MreB, three penicillin-binding proteins, two L,D-transpeptidases, a LytR-CpsA-Psr-family protein predicted to be involved in cell wall teichoic acid deposition and a predicted MprF protein, which adds lysyl groups to phosphatidylglycerol to neutralize membrane surface charge. Taken together, these analyses provide biological insight into the σE -mediated cell envelope stress response in the genus Streptomyces.


Assuntos
Proteínas de Bactérias/metabolismo , Fator sigma/metabolismo , Streptomyces coelicolor/fisiologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Regulon , Fator sigma/genética , Streptomyces coelicolor/genética , Estresse Fisiológico
4.
Nucleic Acids Res ; 46(14): 7405-7417, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29905823

RESUMO

Streptomyces are filamentous bacteria with a complex developmental life cycle characterized by the formation of spore-forming aerial hyphae. Transcription of the chaplin and rodlin genes, which are essential for aerial hyphae production, is directed by the extracytoplasmic function (ECF) σ factor BldN, which is in turn controlled by an anti-σ factor, RsbN. RsbN shows no sequence similarity to known anti-σ factors and binds and inhibits BldN in an unknown manner. Here we describe the 2.23 Å structure of the RsbN-BldN complex. The structure shows that BldN harbors σ2 and σ4 domains that are individually similar to other ECF σ domains, which bind -10 and -35 promoter regions, respectively. The anti-σ RsbN consists of three helices, with α3 forming a long helix embraced between BldN σ2 and σ4 while RsbN α1-α2 dock against σ4 in a manner that would block -35 DNA binding. RsbN binding also freezes BldN in a conformation inactive for simultaneous -10 and -35 promoter interaction and RNAP binding. Strikingly, RsbN is structurally distinct from previously solved anti-σ proteins. Thus, these data characterize the molecular determinants controlling a central Streptomyces developmental switch and reveal RsbN to be the founding member of a new structural class of anti-σ factor.


Assuntos
Proteínas de Bactérias/metabolismo , Complexos Multiproteicos/metabolismo , Fator sigma/metabolismo , Streptomyces/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Complexos Multiproteicos/química , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Fator sigma/química , Fator sigma/genética , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento , Transcrição Gênica
5.
Proc Natl Acad Sci U S A ; 114(30): E6176-E6183, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28687675

RESUMO

During sporulation, the filamentous bacteria Streptomyces undergo a massive cell division event in which the synthesis of ladders of sporulation septa convert multigenomic hyphae into chains of unigenomic spores. This process requires cytokinetic Z-rings formed by the bacterial tubulin homolog FtsZ, and the stabilization of the newly formed Z-rings is crucial for completion of septum synthesis. Here we show that two dynamin-like proteins, DynA and DynB, play critical roles in this process. Dynamins are a family of large, multidomain GTPases involved in key cellular processes in eukaryotes, including vesicle trafficking and organelle division. Many bacterial genomes encode dynamin-like proteins, but the biological function of these proteins has remained largely enigmatic. Using a cell biological approach, we show that the two Streptomyces dynamins specifically localize to sporulation septa in an FtsZ-dependent manner. Moreover, dynamin mutants have a cell division defect due to the decreased stability of sporulation-specific Z-rings, as demonstrated by kymographs derived from time-lapse images of FtsZ ladder formation. This defect causes the premature disassembly of individual Z-rings, leading to the frequent abortion of septum synthesis, which in turn results in the production of long spore-like compartments with multiple chromosomes. Two-hybrid analysis revealed that the dynamins are part of the cell division machinery and that they mediate their effects on Z-ring stability during developmentally controlled cell division via a network of protein-protein interactions involving DynA, DynB, FtsZ, SepF, SepF2, and the FtsZ-positioning protein SsgB.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas do Citoesqueleto/química , Dinaminas/fisiologia , Streptomyces/fisiologia , Proteínas de Bactérias/química , Divisão Celular , Dinaminas/química
6.
PLoS Genet ; 10(8): e1004554, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25101778

RESUMO

The orphan, atypical response regulators BldM and WhiI each play critical roles in Streptomyces differentiation. BldM is required for the formation of aerial hyphae, and WhiI is required for the differentiation of these reproductive structures into mature spores. To gain insight into BldM function, we defined the genome-wide BldM regulon using ChIP-Seq and transcriptional profiling. BldM target genes clustered into two groups based on their whi gene dependency. Expression of Group I genes depended on bldM but was independent of all the whi genes, and biochemical experiments showed that Group I promoters were controlled by a BldM homodimer. In contrast, Group II genes were expressed later than Group I genes and their expression depended not only on bldM but also on whiI and whiG (encoding the sigma factor that activates whiI). Additional ChIP-Seq analysis showed that BldM Group II genes were also direct targets of WhiI and that in vivo binding of WhiI to these promoters depended on BldM and vice versa. We go on to demonstrate that BldM and WhiI form a functional heterodimer that controls Group II promoters, serving to integrate signals from two distinct developmental pathways. The BldM-WhiI system thus exemplifies the potential of response regulator heterodimer formation as a mechanism to expand the signaling capabilities of bacterial cells.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Fator sigma/genética , Esporos Bacterianos/genética , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Regulação Bacteriana da Expressão Gênica , Hifas/genética , Hifas/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Multimerização Proteica , Transdução de Sinais/genética , Esporos Bacterianos/crescimento & desenvolvimento , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento
7.
Microbiology (Reading) ; 162(7): 1208-1219, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27121970

RESUMO

The GlgE pathway is thought to be responsible for the conversion of trehalose into a glycogen-like α-glucan polymer in bacteria. Trehalose is first converted to maltose, which is phosphorylated by maltose kinase Pep2 to give α-maltose 1-phosphate. This is the donor substrate of the maltosyl transferase GlgE that is known to extend α-1,4-linked maltooligosaccharides, which are thought to be branched with α-1,6 linkages. The genome of Streptomyces venezuelae contains all the genes coding for the GlgE pathway enzymes but none of those of related pathways, including glgC and glgA of the glycogen pathway. This provides an opportunity to study the GlgE pathway in isolation. The genes of the GlgE pathway were upregulated at the onset of sporulation, consistent with the known timing of α-glucan deposition. A constructed ΔglgE null mutant strain was viable but showed a delayed developmental phenotype when grown on maltose, giving less cell mass and delayed sporulation. Pre-spore cells and spores of the mutant were frequently double the length of those of the wild-type, implying impaired cross-wall formation, and spores showed reduced tolerance to stress. The mutant accumulated α-maltose 1-phosphate and maltose but no α-glucan. Therefore, the GlgE pathway is necessary and sufficient for polymer biosynthesis. Growth of the ΔglgE mutant on galactose and that of a Δpep2 mutant on maltose were analysed. In both cases, neither accumulation of α-maltose 1-phosphate/α-glucan nor a developmental delay was observed. Thus, high levels of α-maltose 1-phosphate are responsible for the developmental phenotype of the ΔglgE mutant, rather than the lack of α-glucan.


Assuntos
Glucanos/metabolismo , Glucosiltransferases/genética , Esporos Bacterianos/crescimento & desenvolvimento , Streptomyces/crescimento & desenvolvimento , Fosfatos Açúcares/metabolismo , Glicogênio/metabolismo , Maltose/metabolismo , Oligossacarídeos/metabolismo , Esporos Bacterianos/genética , Streptomyces/genética , Trealose/metabolismo
8.
Chembiochem ; 17(22): 2189-2198, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27605017

RESUMO

Comparative transcriptional profiling of a ΔbldM mutant of Streptomyces venezuelae with its unmodified progenitor revealed that the expression of a cryptic biosynthetic gene cluster containing both type I and type III polyketide synthase genes is activated in the mutant. The 29.5 kb gene cluster, which was predicted to encode an unusual biaryl metabolite, which we named venemycin, and potentially halogenated derivatives, contains 16 genes including one-vemR-that encodes a transcriptional activator of the large ATP-binding LuxR-like (LAL) family. Constitutive expression of vemR in the ΔbldM mutant led to the production of sufficient venemycin for structural characterisation, confirming its unusual biaryl structure. Co-expression of the venemycin biosynthetic gene cluster and vemR in the heterologous host Streptomyces coelicolor also resulted in venemycin production. Although the gene cluster encodes two halogenases and a flavin reductase, constitutive expression of all three genes led to the accumulation only of a monohalogenated venemycin derivative, both in the native producer and the heterologous host. A competition experiment in which equimolar quantities of sodium chloride and sodium bromide were fed to the venemycin-producing strains resulted in the preferential incorporation of bromine, thus suggesting that bromide is the preferred substrate for one or both halogenases.


Assuntos
Policetídeos/metabolismo , Streptomyces/genética , Antibacterianos/biossíntese , Antibacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , FMN Redutase/genética , FMN Redutase/metabolismo , Halogenação , Família Multigênica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/química , Streptomyces/enzimologia
10.
Antimicrob Agents Chemother ; 58(12): 7441-50, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25267678

RESUMO

Comparative genome analysis revealed seven uncharacterized genes, sven0909 to sven0915, adjacent to the previously identified chloramphenicol biosynthetic gene cluster (sven0916-sven0928) of Streptomyces venezuelae strain ATCC 10712 that was absent in a closely related Streptomyces strain that does not produce chloramphenicol. Transcriptional analysis suggested that three of these genes might be involved in chloramphenicol production, a prediction confirmed by the construction of deletion mutants. These three genes encode a cluster-associated transcriptional activator (Sven0913), a phosphopantetheinyl transferase (Sven0914), and a Na(+)/H(+) antiporter (Sven0915). Bioinformatic analysis also revealed the presence of a previously undetected gene, sven0925, embedded within the chloramphenicol biosynthetic gene cluster that appears to encode an acyl carrier protein, bringing the number of new genes likely to be involved in chloramphenicol production to four. Microarray experiments and synteny comparisons also suggest that sven0929 is part of the biosynthetic gene cluster. This has allowed us to propose an updated and revised version of the chloramphenicol biosynthetic pathway.


Assuntos
Proteínas de Bactérias/genética , Cloranfenicol/biossíntese , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética , Streptomyces/genética , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Análise em Microsséries , Anotação de Sequência Molecular , Família Multigênica , Mutação , Análise de Sequência de DNA , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Streptomyces/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
11.
J Bacteriol ; 195(21): 4924-35, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23995638

RESUMO

The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, Hau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage Hau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species.


Assuntos
Bacteriófagos/genética , Bacteriófagos/fisiologia , Evolução Biológica , Streptomyces/virologia , Adaptação Fisiológica , Sequência de Aminoácidos , Sequência de Bases , Regulação Viral da Expressão Gênica/fisiologia , Genoma Viral , Dados de Sequência Molecular , Prófagos/genética , Prófagos/metabolismo , Especificidade da Espécie , Streptomyces/classificação , Proteínas Virais/genética , Proteínas Virais/metabolismo
12.
Mol Microbiol ; 84(6): 1033-49, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22582857

RESUMO

The chaplin and rodlin proteins together constitute the major components of the hydrophobic sheath that coats the aerial hyphae and spores in Streptomyces, and mutants lacking the chaplins are unable to erect aerial hyphae and differentiate on minimal media. We have gained insight into the developmental regulation of the chaplin (chp) and rodlin (rdl) genes by exploiting a new model species, Streptomyces venezuelae, which sporulates in liquid culture. Using microarrays, the chaplin and rodlin genes were found to be highly induced during submerged sporulation in a bldN-dependent manner. Using σ(BldN) ChIP-chip, we show that this dependence arises because the chaplin and rodlin genes are direct biochemical targets of σ(BldN) . sven3186 (here named rsbN for regulator of sigma BldN), the gene lying immediately downstream of bldN, was also identified as a target of σ(BldN) . Disruption of rsbN causes precocious sporulation and biochemical experiments demonstrate that RsbN functions as a σ(BldN) -specific anti-sigma factor.


Assuntos
Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica , Fator sigma/antagonistas & inibidores , Fator sigma/metabolismo , Streptomyces/genética , Sequência de Bases , Perfilação da Expressão Gênica , Ordem dos Genes , Análise em Microsséries , Modelos Biológicos , Dados de Sequência Molecular , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo
13.
Mol Microbiol ; 78(2): 361-79, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20979333

RESUMO

BldD is a transcriptional regulator essential for morphological development and antibiotic production in Streptomyces coelicolor. Here we identify the BldD regulon by means of chromatin immunoprecipitation-microarray analysis (ChIP-chip). The BldD regulon encompasses ~167 transcriptional units, of which more than 20 are known to play important roles in development (e.g. bldA, bldC, bldH/adpA, bldM, bldN, ssgA, ssgB, ftsZ, whiB, whiG, smeA-ssfA) and/or secondary metabolism (e.g. nsdA, cvn9, bldA, bldC, leuA). Strikingly, 42 BldD target genes (~25% of the regulon) encode regulatory proteins, stressing the central, pleiotropic role of BldD. Almost all BldD binding sites identified by ChIP-chip are present in the promoters of the target genes. An exception is the tRNA gene bldA, where BldD binds within the region encoding the primary transcript, immediately downstream of the position corresponding to the processed, mature 3 end of the tRNA. Through gene overexpression, we identified a novel BldD target gene (cdgA) that influences differentiation and antibiotic production. cdgA encodes a GGDEF domain protein, implicating c-di-GMP in the regulation of Streptomyces development. Sequence analysis of the upstream regions of the complete regulon identified a 15 bp inverted repeat that functions as a high-affinity binding site for BldD, as was shown by electrophoretic mobility shift assays and DNase I footprinting analysis. High-scoring copies of the BldD binding site were found at relevant positions in the genomes of other bacteria containing a BldD homologue, suggesting the role of BldD is conserved in sporulating actinomycetes.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulon , Streptomyces coelicolor/genética , Fatores de Transcrição/metabolismo , Antibacterianos/biossíntese , Proteínas de Bactérias/genética , Imunoprecipitação da Cromatina , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Essenciais , Genes Reguladores , Análise de Sequência com Séries de Oligonucleotídeos , RNA Bacteriano/metabolismo , RNA de Transferência de Leucina/metabolismo , Análise de Sequência de DNA , Streptomyces coelicolor/crescimento & desenvolvimento , Streptomyces coelicolor/metabolismo , Fatores de Transcrição/genética
14.
Nat Microbiol ; 5(6): 821-829, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32251369

RESUMO

Volatile compounds emitted by bacteria are often sensed by other organisms as odours, but their ecological roles are poorly understood1,2. Well-known examples are the soil-smelling terpenoids geosmin and 2-methylisoborneol (2-MIB)3,4, which humans and various animals sense at extremely low concentrations5,6. The conservation of geosmin biosynthesis genes among virtually all species of Streptomyces bacteria (and genes for the biosynthesis of 2-MIB in about 50%)7,8, suggests that the volatiles provide a selective advantage for these soil microbes. We show, in the present study, that these volatiles mediate interactions of apparent mutual benefit between streptomycetes and springtails (Collembola). In field experiments, springtails were attracted to odours emitted by Streptomyces colonies. Geosmin and 2-MIB in these odours induce electrophysiological responses in the antennae of the model springtail Folsomia candida, which is also attracted to both compounds. Moreover, the genes for geosmin and 2-MIB synthases are under the direct control of sporulation-specific transcription factors, constraining emission of the odorants to sporulating colonies. F. candida feeds on the Streptomyces colonies and disseminates spores both via faecal pellets and through adherence to its hydrophobic cuticle. The results indicate that geosmin and 2-MIB production is an integral part of the sporulation process, completing the Streptomyces life cycle by facilitating dispersal of spores by soil arthropods.


Assuntos
Artrópodes/microbiologia , Canfanos/farmacologia , Naftóis/farmacologia , Feromônios/farmacologia , Solo/parasitologia , Esporos Bacterianos , Streptomyces , Animais
15.
J Bacteriol ; 190(17): 5879-89, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18586935

RESUMO

The chaplins are a family of eight secreted proteins that are critical for raising aerial hyphae in Streptomyces coelicolor. These eight chaplins can be separated into two main groups: the long chaplins (ChpA to -C) and the short chaplins (ChpD to -H). The short chaplins can be further subdivided on the basis of their abilities to form intramolecular disulfide bonds: ChpD, -F, -G, and -H contain two Cys residues, while ChpE has none. A "minimal chaplin strain" containing only chpC, chpE, and chpH was constructed and was found to raise a substantial aerial mycelium. This strain was used to examine the roles of specific chaplins. Within this strain, the Cys-containing ChpH was identified as the major polymerization unit contributing to aerial hypha formation and assembly of an intricate rodlet ultrastructure on the aerial surfaces, and the two Cys residues were determined to be critical for its function. ChpC augmented aerial hypha formation and rodlet assembly, likely by anchoring the short chaplins to the cell surface, while ChpE was essential for the viability of wild-type S. coelicolor. Interestingly, the lethal effects of a chpE null mutation could be suppressed by the loss of the other chaplins, the inactivation of the twin arginine translocation (Tat) secretion pathway, or the loss of the rodlins.


Assuntos
Proteínas de Bactérias/fisiologia , Hifas/fisiologia , Proteínas de Membrana/fisiologia , Streptomyces coelicolor/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína/genética , Cisteína/metabolismo , Teste de Complementação Genética , Hifas/genética , Hifas/ultraestrutura , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Viabilidade Microbiana , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos , Streptomyces coelicolor/genética , Streptomyces coelicolor/ultraestrutura
16.
Chem Sci ; 8(4): 2823-2831, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28553520

RESUMO

2-Hydroxyphenylthiazolines are a family of iron-chelating nonribosomal peptide natural products that function as virulence-conferring siderophores in various Gram-negative bacteria. They have also been reported as metabolites of Gram-positive Streptomyces species. Transcriptional analyses of Streptomyces venezuelae ATCC 10712 revealed that its genome contains a putative 2-hydroxyphenylthiazoline biosynthetic gene cluster. Heterologous expression of the gene cluster in Streptomyces coelicolor M1152 showed that the mono- and dimethylated derivatives, thiazostatin and watasemycin, respectively, of the 2-hydroxyphenylthiazoline enantiopyochelin are two of its metabolic products. In addition, isopyochelin, a novel isomer of pyochelin containing a C-methylated thiazolidine, was identified as a third metabolic product of the cluster. Metabolites with molecular formulae corresponding to aerugine and pulicatins A/B were also detected. The structure and stereochemistry of isopyochelin were confirmed by comparison with synthetic standards. The role of two genes in the cluster encoding homologues of PchK, which is proposed to catalyse thiazoline reduction in the biosynthesis of enantiopyochelin in Pseudomonas protegens, was investigated. One was required for the production of all the metabolic products of the cluster, whereas the other appears not to be involved in the biosynthesis of any of them. Deletion of a gene in the cluster encoding a type B radical-SAM methylase homologue abolished the production of watasemycin, but not thiazostatin or isopyochelin. Feeding of thiazostatin to the mutant lacking the functional PchK homologue resulted in complete conversion to watasemycin, demonstrating that thiazoline C-methylation by the type B radical-SAM methylase homologue is the final step in watasemycin biosynthesis.

17.
mBio ; 7(2): e00523-16, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27094333

RESUMO

UNLABELLED: WhiB is the founding member of a family of proteins (the WhiB-like [Wbl] family) that carry a [4Fe-4S] iron-sulfur cluster and play key roles in diverse aspects of the biology of actinomycetes, including pathogenesis, antibiotic resistance, and the control of development. In Streptomyces, WhiB is essential for the process of developmentally controlled cell division that leads to sporulation. The biochemical function of Wbl proteins has been controversial; here, we set out to determine unambiguously if WhiB functions as a transcription factor using chromatin immunoprecipitation sequencing (ChIP-seq) in Streptomyces venezuelae. In the first demonstration of in vivo genome-wide Wbl binding, we showed that WhiB regulates the expression of key genes required for sporulation by binding upstream of ~240 transcription units. Strikingly, the WhiB regulon is identical to the previously characterized WhiA regulon, providing an explanation for the identical phenotypes of whiA and whiB mutants. Using ChIP-seq, we demonstrated that in vivo DNA binding by WhiA depends on WhiB and vice versa, showing that WhiA and WhiB function cooperatively to control expression of a common set of WhiAB target genes. Finally, we show that mutation of the cysteine residues that coordinate the [4Fe-4S] cluster in WhiB prevents DNA binding by both WhiB and WhiA in vivo. IMPORTANCE: Despite the central importance of WhiB-like (Wbl) proteins in actinomycete biology, a conclusive demonstration of their biochemical function has been elusive, and they have been difficult to study, particularly in vitro, largely because they carry an oxygen-sensitive [4Fe-4S] cluster. Here we used genome-wide ChIP-seq to investigate the function of Streptomyces WhiB, the founding member of the Wbl family. The advantage of this approach is that the oxygen sensitivity of the [4Fe-4S] cluster becomes irrelevant once the protein has been cross-linked to DNA in vivo. Our data provide the most compelling in vivo evidence to date that WhiB, and, by extension, probably all Wbl proteins, function as transcription factors. Further, we show that WhiB does not act independently but rather coregulates its regulon of sporulation genes with a partner transcription factor, WhiA.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulon , Streptomyces/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Divisão Celular , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Genoma Bacteriano , Streptomyces/citologia , Streptomyces/genética , Streptomyces/metabolismo , Fatores de Transcrição/genética
18.
J Mol Biol ; 333(2): 461-72, 2003 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-14529630

RESUMO

The regulation of disulphide stress in actinomycetes such as Streptomyces coelicolor is known to involve the zinc-containing anti-sigma factor RsrA that binds and inactivates the redox-regulated sigma factor sigmaR. However, it is not known how RsrA senses disulphide stress nor what role the metal ion plays. Using in vitro assays, we show that while zinc is not required for sigmaR binding it is required for functional anti-sigma factor activity, and that it plays a critical role in modulating the reactivity of RsrA cysteine thiol groups towards oxidation. Apo-RsrA is easily oxidised and, while the Zn-bound form is relatively resistant, the metal ion is readily expelled when the protein is treated with strong oxidants such as diamide. We also show, using a combination of proteolysis and mass spectrometry, that the first critical disulphide to form in RsrA involves Cys11 and one of either Cys41 or Cys44, all previously implicated in metal binding. Circular dichroism spectroscopy was used to follow structural changes during oxidation of RsrA, which indicated that concomitant with formation of this critical disulphide bond is a major restructuring of the protein where its alpha-helical content increases. Our data demonstrate that RsrA can only bind sigmaR in the reduced state and that this state is stabilised by zinc. Redox stress induces disulphide bond formation amongst zinc-ligating residues, expelling the metal ion and stabilising a structure incapable of binding the sigma factor.


Assuntos
Proteínas de Bactérias , Dissulfetos/metabolismo , Estresse Oxidativo , Conformação Proteica , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Zinco/metabolismo , Alquilação , Dicroísmo Circular , Regulação Bacteriana da Expressão Gênica , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/metabolismo , Modelos Moleculares , Mutagênese , Oxirredução , Ligação Proteica , Resorcinóis/metabolismo , Fator sigma/química , Fator sigma/genética , Streptomyces/química , Streptomyces/genética , Streptomyces/metabolismo , Compostos de Sulfidrila/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica
19.
mBio ; 4(5): e00684-13, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24065632

RESUMO

UNLABELLED: WhiA is a highly unusual transcriptional regulator related to a family of eukaryotic homing endonucleases. WhiA is required for sporulation in the filamentous bacterium Streptomyces, but WhiA homologues of unknown function are also found throughout the Gram-positive bacteria. To better understand the role of WhiA in Streptomyces development and its function as a transcription factor, we identified the WhiA regulon through a combination of chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray transcriptional profiling, exploiting a new model organism for the genus, Streptomyces venezuelae, which sporulates in liquid culture. The regulon encompasses ~240 transcription units, and WhiA appears to function almost equally as an activator and as a repressor. Bioinformatic analysis of the upstream regions of the complete regulon, combined with DNase I footprinting, identified a short but highly conserved asymmetric sequence, GACAC, associated with the majority of WhiA targets. Construction of a null mutant showed that whiA is required for the initiation of sporulation septation and chromosome segregation in S. venezuelae, and several genes encoding key proteins of the Streptomyces cell division machinery, such as ftsZ, ftsW, and ftsK, were found to be directly activated by WhiA during development. Several other genes encoding proteins with important roles in development were also identified as WhiA targets, including the sporulation-specific sigma factor σ(WhiG) and the diguanylate cyclase CdgB. Cell division is tightly coordinated with the orderly arrest of apical growth in the sporogenic cell, and filP, encoding a key component of the polarisome that directs apical growth, is a direct target for WhiA-mediated repression during sporulation. IMPORTANCE: Since the initial identification of the genetic loci required for Streptomyces development, all of the bld and whi developmental master regulators have been cloned and characterized, and significant progress has been made toward understanding the cell biological processes that drive morphogenesis. A major challenge now is to connect the cell biological processes and the developmental master regulators by dissecting the regulatory networks that link the two. Studies of these regulatory networks have been greatly facilitated by the recent introduction of Streptomyces venezuelae as a new model system for the genus, a species that sporulates in liquid culture. Taking advantage of S. venezuelae, we have characterized the regulon of genes directly under the control of one of these master regulators, WhiA. Our results implicate WhiA in the direct regulation of key steps in sporulation, including the cessation of aerial growth, the initiation of cell division, and chromosome segregation.


Assuntos
Proteínas de Bactérias/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos/genética , Regulação da Expressão Gênica no Desenvolvimento , Esporos Bacterianos/crescimento & desenvolvimento , Streptomyces/genética , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Divisão Celular , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo , Fatores de Transcrição/genética
20.
Mol Microbiol ; 58(5): 1276-87, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16313616

RESUMO

A complex programme of regulation governs gene expression during development of the morphologically and biochemically complex eubacterial genus Streptomyces. Earlier work has suggested a model in which 'higher level' pleiotropic regulators activate 'pathway-specific' regulators located within chromosomal gene clusters encoding biosynthesis of individual antibiotics. We used mutational analysis and adventitious overexpression of key Streptomyces coelicolor regulators to investigate functional interactions among them. We report here that cluster-situated regulators (CSRs) thought to be pathway-specific can also control other antibiotic biosynthetic gene clusters, and thus have pleiotropic actions. Surprisingly, we also find that CSRs exhibit growth-phase-dependent control over afsR2/afsS, a 'higher level' pleiotropic regulatory locus not located within any of the chromosomal gene clusters it targets, and further demonstrate that cross-regulation by CSRs is modulated globally and differentially during the S. coelicolor growth cycle by the RNaseIII homologue AbsB. Our results, which reveal a network of functional interactions among regulators that govern production of antibiotics and other secondary metabolites in S. coelicolor, suggest that revision of the currently prevalent view of higher-level versus pathway-specific regulation of secondary metabolism in Streptomyces species is warranted.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Família Multigênica , Streptomyces coelicolor/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Streptomyces coelicolor/genética , Streptomyces coelicolor/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA