Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
EMBO J ; 42(7): e111961, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574362

RESUMO

Cytosolic DNA promotes inflammatory responses upon detection by the cyclic GMP-AMP (cGAMP) synthase (cGAS). It has been suggested that cGAS downregulation is an immune escape strategy harnessed by tumor cells. Here, we used glioblastoma cells that show undetectable cGAS levels to address if alternative DNA detection pathways can promote pro-inflammatory signaling. We show that the DNA-PK DNA repair complex (i) drives cGAS-independent IRF3-mediated type I Interferon responses and (ii) that its catalytic activity is required for cGAS-dependent cGAMP production and optimal downstream signaling. We further show that the cooperation between DNA-PK and cGAS favors the expression of chemokines that promote macrophage recruitment in the tumor microenvironment in a glioblastoma model, a process that impairs early tumorigenesis but correlates with poor outcome in glioblastoma patients. Thus, our study supports that cGAS-dependent signaling is acquired during tumorigenesis and that cGAS and DNA-PK activities should be analyzed concertedly to predict the impact of strategies aiming to boost tumor immunogenicity.


Assuntos
Proteína Quinase Ativada por DNA , Glioblastoma , Nucleotidiltransferases , Humanos , Carcinogênese , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Glioblastoma/genética , Imunidade Inata , Inflamação , Nucleotidiltransferases/metabolismo , Microambiente Tumoral , Proteína Quinase Ativada por DNA/metabolismo
2.
Blood ; 142(18): 1543-1555, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37562004

RESUMO

A strategy combining targeted therapies is effective in B-cell lymphomas (BCL), such as mantle cell lymphoma (MCL), but acquired resistances remain a recurrent issue. In this study, we performed integrative longitudinal genomic and single-cell RNA-sequencing analyses of patients with MCL who were treated with targeted therapies against CD20, BCL2, and Bruton tyrosine kinase (OAsIs trial). We revealed the emergence of subclones with a selective advantage against OAsIs combination in vivo and showed that resistant cells were characterized by B-cell receptor (BCR)-independent overexpression of NF-κB1 target genes, especially owing to CARD11 mutations. Functional studies demonstrated that CARD11 gain of function not only resulted in BCR independence but also directly increased the transcription of the antiapoptotic BCL2A1, leading to resistance against venetoclax and OAsIs combination. Based on the transcriptional profile of OAsIs-resistant subclones, we designed a 16-gene resistance signature that was also predictive for patients with MCL who were treated with conventional chemotherapy, underlying a common escape mechanism. Among druggable strategies to inhibit CARD11-dependent NF-κB1 transduction, we evaluated the selective inhibition of its essential partner MALT1. We demonstrated that MALT1 protease inhibition led to a reduction in the expression of genes involved in OAsIs resistance, including BCL2A1. Consequently, MALT1 inhibition induced synergistic cell death in combination with BCL2 inhibition, irrespective of CARD11 mutational status, both in vitro and in vivo. Taken together, our study identified mechanisms of resistance to targeted therapies and provided a novel strategy to overcome resistance in aggressive BCL. The OAsIs trial was registered at www.clinicaltrials.gov #NCT02558816.


Assuntos
Linfoma Difuso de Grandes Células B , Linfoma de Célula do Manto , Adulto , Humanos , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linhagem Celular Tumoral , Mutação com Ganho de Função , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma de Célula do Manto/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
3.
EMBO J ; 39(1): e102030, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31774199

RESUMO

Glioblastoma is one of the most lethal forms of adult cancer with a median survival of around 15 months. A potential treatment strategy involves targeting glioblastoma stem-like cells (GSC), which constitute a cell autonomous reservoir of aberrant cells able to initiate, maintain, and repopulate the tumor mass. Here, we report that the expression of the paracaspase mucosa-associated lymphoid tissue l (MALT1), a protease previously linked to antigen receptor-mediated NF-κB activation and B-cell lymphoma survival, inversely correlates with patient probability of survival. The knockdown of MALT1 largely impaired the expansion of patient-derived stem-like cells in vitro, and this could be recapitulated with pharmacological inhibitors, in vitro and in vivo. Blocking MALT1 protease activity increases the endo-lysosome abundance, impairs autophagic flux, and culminates in lysosomal-mediated cell death, concomitantly with mTOR inactivation and dispersion from endo-lysosomes. These findings place MALT1 as a new druggable target involved in glioblastoma and unveil ways to modulate the homeostasis of endo-lysosomes.


Assuntos
Biomarcadores Tumorais/metabolismo , Endossomos/patologia , Glioma/patologia , Homeostase , Lisossomos/patologia , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Células-Tronco Neoplásicas/patologia , Idoso , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Endossomos/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Humanos , Ativação Linfocitária , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Células-Tronco Neoplásicas/metabolismo , Proteólise , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cell ; 133(3): 401-2, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18455981

RESUMO

Proteins with death effector domains (DED) are key signal transducers involved in cell death and inflammation. In this issue of Cell, Sun et al. (2008) describe TIPE2, a DED protein that negatively regulates both T cell receptor and Toll-like receptor signaling. These findings reveal a new element critical to the maintenance of homeostasis in both the adaptive and innate immune systems.


Assuntos
Homeostase , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Animais , Caspases/metabolismo , Morte Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Camundongos , Estrutura Terciária de Proteína , Transdução de Sinais , Receptores Toll-Like/imunologia
5.
EMBO Rep ; 20(10): e47840, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31410978

RESUMO

The activation of mixed lineage kinase-like (MLKL) by receptor-interacting protein kinase-3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis-deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proinflammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin-1 (PANX1) channels, concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane "leakiness" requires the small GTPase RAB27A and RAB27B isoforms, which regulate intracellular vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin-8, indicating that PANX1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL, RAB27, and PANX1 and propose ways to interfere with inflammation associated with necroptosis.


Assuntos
Conexinas/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Necroptose , Proteínas do Tecido Nervoso/metabolismo , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Sobrevivência Celular , Inativação Gênica , Células HT29 , Humanos , Proteínas Quinases/metabolismo , Multimerização Proteica , Vesículas Transportadoras/metabolismo
6.
Cell Immunol ; 353: 104115, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32388054

RESUMO

The CARMA1-BCL10-MALT1 (CBM) complex couples antigen receptors to the activation of Nuclear Factor κB (NF-κB) transcription factors in T/B lymphocytes. Within this signalosome, the MALT1 paracaspase serves dual roles: it is a crucial adaptor for signal transduction to NF-κB signaling, and a protease that shapes NF-κB activity and lymphocyte activation. Although a subtle choreography of ubiquitination and phosphorylation orchestrate the CBM, how precisely this complex and MALT1 enzyme are regulated continue to be elucidated. Here, we report that the chemical inhibition or the siRNA-based silencing of transforming growth factor beta-activated kinase 1 (TAK1), a known partner of the CBM complex required for NF-κB activation, enhanced the processing of MALT1 substrates. We further show that the assembly of the CBM as well as the ubiquitination of MALT1 was augmented when TAK1 was inhibited. Thus, TAK1 may initiate a negative feedback loop to finely tune the CBM complex activity.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfócitos B/imunologia , Humanos , Células Jurkat , Ativação Linfocitária , Complexos Multiproteicos/metabolismo , NF-kappa B/metabolismo , Proteínas de Neoplasias/genética , Fosforilação , Transdução de Sinais , Fatores de Transcrição/metabolismo
7.
Cell Immunol ; 353: 104133, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32450431

RESUMO

The natural bioactive glycerophospholipid lysophosphatidic acid (LPA) binds to its cognate G protein-coupled receptors (GPCRs) on the cell surface to promote the activation of several transcription factors, including NF-κB. LPA-mediated activation of NF-κB relies on the formation of a signalosome that contains the scaffold CARMA3, the adaptor BCL10 and the paracaspase MALT1 (CBM complex). The CBM complex has been extensively studied in lymphocytes, where it links antigen receptors to NF-κB activation via the recruitment of the linear ubiquitin assembly complex (LUBAC), a tripartite complex of HOIP, HOIL1 and SHARPIN. Moreover, MALT1 cleaves the LUBAC subunit HOIL1 to further enhance NF-κB activation. However, the contribution of the LUBAC downstream of GPCRs has not been investigated. By using murine embryonic fibroblasts from mice deficient for HOIP, HOIL1 and SHARPIN, we report that the LUBAC is crucial for the activation of NF-κB in response to LPA. Further echoing the situation in lymphocytes, LPA unbridles the protease activity of MALT1, which cleaves HOIL1 at the Arginine 165. The expression of a MALT1-insensitive version of HOIL1 reveals that this processing is involved in the optimal production of the NF-κB target cytokine interleukin-6. Lastly, we provide evidence that the guanine exchange factor GEF-H1 favors MALT1-mediated cleavage of HOIL1 and NF-κB signaling in this context. Together, our results unveil a critical role for the LUBAC as a positive regulator of NF-κB signaling downstream of LPA receptors.


Assuntos
Lisofosfolipídeos/farmacologia , Complexos Multiproteicos/metabolismo , NF-kappa B/metabolismo , Animais , Proteína 10 de Linfoma CCL de Células B/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Técnicas de Cultura de Células , Fibroblastos/metabolismo , Glicerofosfolipídeos/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
8.
Mol Carcinog ; 58(1): 161-168, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30230038

RESUMO

Head and neck squamous cell carcinoma (HNSCC) represent aggressive classes of tumors with a high mortality rate. The mammalian target of rapamycin (mTOR) pathway is instrumental in their initiation and expansion. Although results from pre-clinical models promise mTOR targeting as a potent novel therapeutic approach, its impact on the tumor microenvironment, such as endothelial cells is only scarcely investigated. Here, we first confirmed the effects of mTOR pharmacological inhibition on cell viability, clonogenicity, and proliferation in HNSCC human cell lines, HN26, and HN30. While Everolimus and Torin1 potently blunted mTOR-based proliferation of HN26 and HN30 lines, endothelial cells were left intact. To further explore the possibility of a paracrine bystander action of HNSCC-treated cells on endothelial cells, conditioned medium from Everolimus- and Torin1-challenged HN26 and HN30 cells were collected and applied to naive human endothelial cells. Although endothelial cell viability was again not modified, morphology and mobility were changed. Indeed, spreading of endothelial cells was altered upon challenge with mTOR-pretreated tumor conditioned-media, as measured via cell impedance and imagery. Interestingly, this was associated with an augmentation of focal adhesion kinase (FAK) active phosphorylation and enhanced migratory behavior. From a molecular standpoint, the production of vascular endothelial growth factor was elevated in treated HNSCC cells and might contribute to FAK phosphorylation. Although mTOR inhibition in tumor cells did hinder their growth, it also favors the release of factors that subsequently enable endothelial cell migration. Further studies will address how this paracrine action may affect tumor-driven angiogenesis upon pharmacological treatments.


Assuntos
Carcinoma de Células Escamosas/patologia , Meios de Cultivo Condicionados/farmacologia , Endotélio Vascular/patologia , Neoplasias de Cabeça e Pescoço/patologia , Comunicação Parácrina , Serina-Treonina Quinases TOR/antagonistas & inibidores , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas
9.
J Cell Sci ; 129(9): 1775-80, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27006117

RESUMO

Antigen-receptor-mediated activation of lymphocytes relies on a signalosome comprising CARMA1 (also known as CARD11), BCL10 and MALT1 (the CBM complex). The CBM activates nuclear factor κB (NF-κB) transcription factors by recruiting the 'linear ubiquitin assembly complex' (LUBAC), and unleashes MALT1 paracaspase activity. Although MALT1 enzyme shapes NF-κB signaling, lymphocyte activation and contributes to lymphoma growth, the identity of its substrates continues to be elucidated. Here, we report that the LUBAC subunit HOIL1 (also known as RBCK1) is cleaved by MALT1 following antigen receptor engagement. HOIL1 is also constitutively processed in the 'activated B-cell-like' (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), which exhibits aberrant MALT1 activity. We further show that the overexpression of MALT1-insensitive HOIL1 mitigates T-cell-receptor-mediated NF-κB activation and subsequent cytokine production in lymphocytes. Thus, our results unveil HOIL1 as a negative regulator of lymphocyte activation cleaved by MALT1. This cleavage could therefore constitute an appealing therapeutic target for modulating immune responses.


Assuntos
Caspases/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Caspases/genética , Células HEK293 , Humanos , Células Jurkat , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas de Neoplasias/genética , Receptores de Antígenos de Linfócitos T/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética
10.
Brain ; 140(11): 2939-2954, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053791

RESUMO

Glioblastoma are highly aggressive brain tumours that are associated with an extremely poor prognosis. Within these tumours exists a subpopulation of highly plastic self-renewing cancer cells that retain the ability to expand ex vivo as tumourspheres, induce tumour growth in mice, and have been implicated in radio- and chemo-resistance. Although their identity and fate are regulated by external cues emanating from endothelial cells, the nature of such signals remains unknown. Here, we used a mass spectrometry proteomic approach to characterize the factors released by brain endothelial cells. We report the identification of the vasoactive peptide apelin as a central regulator for endothelial-mediated maintenance of glioblastoma patient-derived cells with stem-like properties. Genetic and pharmacological targeting of apelin cognate receptor abrogates apelin- and endothelial-mediated expansion of glioblastoma patient-derived cells with stem-like properties in vitro and suppresses tumour growth in vivo. Functionally, selective competitive antagonists of apelin receptor were shown to be safe and effective in reducing tumour expansion and lengthening the survival of intracranially xenografted mice. Therefore, the apelin/apelin receptor signalling nexus may operate as a paracrine signal that sustains tumour cell expansion and progression, suggesting that apelin is a druggable factor in glioblastoma.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Apelina , Receptores de Apelina , Neoplasias Encefálicas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais , Glioblastoma/tratamento farmacológico , Células HEK293 , Humanos , Técnicas In Vitro , Espectrometria de Massas , Camundongos , Terapia de Alvo Molecular , Proteômica , RNA Interferente Pequeno , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Blood ; 123(14): 2199-203, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24497531

RESUMO

Antigen receptor-mediated nuclear factor κB (NF-κB) activation relies on the formation of a large multi-protein complex that contains CARMA1, BCL10, and MALT1 (CBM complex). This signalosome is pirated in the activated B-cell-like subgroup of diffuse large B-cell lymphoma (ABC DLBCL) to drive aberrant NF-κB activation, thereby promoting cell survival and propagation. Using an unbiased proteomic approach, we screened for additional components of the CBM in lymphocytes. We found that the linear ubiquitin chain assembly complex (LUBAC), which was previously linked to cytokine-mediated NF-κB activation, dynamically integrates the CBM and marshals NF-κB optimal activation following antigen receptor ligation independently of its catalytic activity. The LUBAC also participates in preassembled CBM complex in cells derived from ABC DLBCL. Silencing the LUBAC reduced NF-κB activation and was toxic in ABC DLBCL cell lines. Thus, our findings reveal a role for the LUBAC during lymphocyte activation and in B-cell malignancy.


Assuntos
Linfoma/metabolismo , NF-kappa B/química , NF-kappa B/metabolismo , Domínios e Motivos de Interação entre Proteínas/fisiologia , Receptores de Antígenos de Linfócitos T/metabolismo , Ubiquitina/metabolismo , Catálise , Linhagem Celular Tumoral , Humanos , Células Jurkat , Ativação Linfocitária/fisiologia , Linfoma/patologia , Ligação Proteica , Ubiquitinação/fisiologia
12.
Cell Commun Signal ; 13: 11, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25889342

RESUMO

BACKGROUND: The viral G protein-coupled receptor (vGPCR) is proposed to act as one of the predominant mediators of Kaposi's sarcoma (KS), a human herpes virus 8 (HHV8)-elicited disease. The actions of vGPCR manifest pathogenesis, in part, through increased permeability of endothelial cells. Endothelial cell-cell junctions have indeed emerged as an instrumental target involved in the vasculature defects observed within the tumor microenvironment. The pathway leading to adherens junction destabilization has been shown to involve the activation of the small GTPase Rac, in the context of either latent infection or the sole expression of vGPCR. However, the precise molecular mechanisms governed by vGPCR in vascular leakage require further elucidation. FINDINGS: Guanine exchange factors (GEFs) function as critical molecular switches that control the activation of small GTPases. We therefore screened the effects of 80 siRNAs targeting GEFs on vGPCR-driven endothelial permeability and identified switch-associated protein 70 (SWAP70) as necessary for its elevating effects. Pull-down experiments further showed that Rac activation by vGPCR was dependent on SWAP70. Examination of tissues and cells from HHV8-positive patients revealed that SWAP70 was ubiquitously expressed. Furthermore, SWAP70 was found to be crucial for vGPCR-driven endothelial tube formation and endothelial sprouting in vitro. CONCLUSIONS: SWAP70 appears to act as a molecular intermediate between vGPCR and endothelial activation. Because of the important role of vGPCR-mediated endothelial plasticity in KS pathogenesis, inhibition of SWAP70 function could be of interest for blocking vGPCR-driven activities in HHV8-defined diseases.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Herpesvirus Humano 8/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Virais/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Herpesvirus Humano 8/genética , Humanos , Antígenos de Histocompatibilidade Menor , Proteínas Nucleares/genética , Receptores Acoplados a Proteínas G/genética , Proteínas Virais/genética
13.
Nature ; 458(7234): 92-6, 2009 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-19118383

RESUMO

The transcription factor NF-kappaB is required for lymphocyte activation and proliferation as well as the survival of certain lymphoma types. Antigen receptor stimulation assembles an NF-kappaB activating platform containing the scaffold protein CARMA1 (also called CARD11), the adaptor BCL10 and the paracaspase MALT1 (the CBM complex), linked to the inhibitor of NF-kappaB kinase complex, but signal transduction is not fully understood. We conducted parallel screens involving a mass spectrometry analysis of CARMA1 binding partners and an RNA interference screen for growth inhibition of the CBM-dependent 'activated B-cell-like' (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Here we report that both screens identified casein kinase 1alpha (CK1alpha) as a bifunctional regulator of NF-kappaB. CK1alpha dynamically associates with the CBM complex on T-cell-receptor (TCR) engagement to participate in cytokine production and lymphocyte proliferation. However, CK1alpha kinase activity has a contrasting role by subsequently promoting the phosphorylation and inactivation of CARMA1. CK1alpha has thus a dual 'gating' function which first promotes and then terminates receptor-induced NF-kappaB. ABC DLBCL cells required CK1alpha for constitutive NF-kappaB activity, indicating that CK1alpha functions as a conditionally essential malignancy gene-a member of a new class of potential cancer therapeutic targets.


Assuntos
Caseína Quinases/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , NF-kappa B/metabolismo , Receptores de Antígenos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína 10 de Linfoma CCL de Células B , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspases/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Retroalimentação Fisiológica , Guanilato Ciclase/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Células Jurkat , Linfoma Difuso de Grandes Células B/enzimologia , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Transdução de Sinais
14.
BMC Cell Biol ; 15: 38, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25339290

RESUMO

BACKGROUND: The interleukin-8 chemokine (IL-8) G-protein coupled receptor CXCR2 governs pro-inflammatory and pro-angiogenic responses in leukocytes and endothelial cells. At a molecular standpoint, CXCR2 is widely reported to operate through calcium flux, phosphoinoisitide 3 kinase (PI3K) and mitogen-activated protein kinase (MAPK). While CXCR2 trafficking is suspected to be intertwined with its signaling, the exact mechanism is not fully elucidated. RESULTS: Here, we identified the lysine 327 within the CXCR2 C-terminal tail as a key residue for ubiquitination, internalization, and signaling. First, the substitution to an arginine of K327 mutation was associated with a reduction in CXCR2 poly-ubiquitination. While WT CXCR2 was rapidly internalized following IL-8 administration, K327R mutant remained at the plasma membrane. Finally, K327R mutant failed to promote the recruitment of ß-arrestin2, as estimated by imagery and bioluminescence resonance transfer. As a consequence, the activation of intracellular signaling, including both early events such as ERK phosphorylation and the increase in calcium flux, and the latter activation of the AP1 and NF-κB transcription factors, was blunted. CONCLUSIONS: Overall, our results demonstrate that CXCR2 ubiquitination on K327 residue modulates agonist-activated CXCR2 cell sorting and intracellular signaling. Thus, the inhibition of K327 ubiquitination might emerge as an effective mean to curb exacerbated CXCR2 signaling in several pathological conditions, such as inflammatory diseases and cancer.


Assuntos
Lisina/análise , Receptores de Interleucina-8B/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Interleucina-8/metabolismo , Lisina/metabolismo , Dados de Sequência Molecular , Transporte Proteico , Receptores de Interleucina-8B/química , Alinhamento de Sequência , Transdução de Sinais
15.
J Cell Sci ; 125(Pt 17): 4137-46, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22685328

RESUMO

VE-cadherin-mediated cell-cell junction weakening increases paracellular permeability in response to both angiogenic and inflammatory stimuli. Although Semaphorin 3A has emerged as one of the few known anti-angiogenic factors to exhibit pro-permeability activity, little is known about how it triggers vascular leakage. Here we report that Semaphorin 3A induced VE-cadherin serine phosphorylation and internalisation, cell-cell junction destabilisation, and loss of barrier integrity in brain endothelial cells. In addition, high-grade glioma-isolated tumour-initiating cells were found to secrete Semaphorin 3A, which promoted brain endothelial monolayer permeability. From a mechanistic standpoint, Semaphorin 3A impinged upon the basal activity of the serine phosphatase PP2A and disrupted PP2A interaction with VE-cadherin, leading to cell-cell junction disorganization and increased permeability. Accordingly, both pharmacological inhibition and siRNA-based knockdown of PP2A mimicked Semaphorin 3A effects on VE-cadherin. Hence, local Semaphorin 3A production impacts on the PP2A/VE-cadherin equilibrium and contributes to elevated vascular permeability.


Assuntos
Permeabilidade da Membrana Celular , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Proteína Fosfatase 2/metabolismo , Semaforina-3A/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Ativação Enzimática , Glioma/enzimologia , Glioma/metabolismo , Glioma/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Quinases da Família src/metabolismo
16.
Cell Rep ; 43(1): 113631, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38183651

RESUMO

Glioblastoma stem-like cells (GSCs) compose a tumor-initiating and -propagating population remarkably vulnerable to variation in the stability and integrity of the lysosomal compartment. Previous work has shown that the expression and activity of the paracaspase MALT1 control GSC viability via lysosome abundance. However, the underlying mechanisms remain elusive. By combining RNA sequencing (RNA-seq) with proteome-wide label-free quantification, we now report that MALT1 repression in patient-derived GSCs alters the homeostasis of cholesterol, which accumulates in late endosomes (LEs)-lysosomes. This failure in cholesterol supply culminates in cell death and autophagy defects, which can be partially reverted by providing exogenous membrane-permeable cholesterol to GSCs. From a molecular standpoint, a targeted lysosome proteome analysis unraveled that Niemann-Pick type C (NPC) lysosomal cholesterol transporters are diluted when MALT1 is impaired. Accordingly, we found that NPC1/2 inhibition and silencing partially mirror MALT1 loss-of-function phenotypes. This supports the notion that GSC fitness relies on lysosomal cholesterol homeostasis.


Assuntos
Glioblastoma , Doença de Niemann-Pick Tipo C , Humanos , Proteoma/metabolismo , Proteínas de Transporte/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Homeostase , Lisossomos/metabolismo , Colesterol/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo
17.
iScience ; 27(4): 109580, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38600973

RESUMO

Centriolar satellites are high-order assemblies, scaffolded by the protein PCM1, that gravitate as particles around the centrosome and play pivotal roles in fundamental cellular processes notably ciliogenesis and autophagy. Despite stringent control mechanisms involving phosphorylation and ubiquitination, the landscape of post-translational modifications shaping these structures remains elusive. Here, we report that necrosulfonamide (NSA), a small molecule known for binding and inactivating the pivotal effector of cell death by necroptosis MLKL, intersects with centriolar satellites, ciliogenesis, and autophagy independently of MLKL. NSA functions as a potent redox cycler and triggers the oxidation and aggregation of PCM1 alongside select partners, while minimally impacting the overall distribution of centriolar satellites. Additionally, NSA-mediated ROS production disrupts ciliogenesis and leads to the accumulation of autophagy markers, partially alleviated by PCM1 deletion. Together, these results identify PCM1 as a redox sensor protein and provide new insights into the interplay between centriolar satellites and autophagy.

18.
Cell Commun Signal ; 11(1): 25, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23590831

RESUMO

BACKGROUND: NF-κB is a master gene regulator involved in plethora of biological processes, including lymphocyte activation and proliferation. Reversible ubiquitinylation of key adaptors is required to convey the optimal activation of NF-κB. However the deubiquitinylases (DUBs), which catalyze the removal of these post-translational modifications and participate to reset the system to basal level following T-Cell receptor (TCR) engagement continue to be elucidated. FINDINGS: Here, we performed an unbiased siRNA library screen targeting the DUBs encoded by the human genome to uncover new regulators of TCR-mediated NF-κB activation. We present evidence that knockdown of Ubiquitin-Specific Protease 34 (USP34) selectively enhanced NF-κB activation driven by TCR engagement, similarly to siRNA against the well-characterized DUB cylindromatosis (CYLD). From a molecular standpoint, USP34 silencing spared upstream signaling but led to a more pronounced degradation of the NF-κB inhibitor IκBα, and culminated with an increased DNA binding activity of the transcription factor. CONCLUSIONS: Collectively, our data unveils USP34 as a new player involved in the fine-tuning of NF-κB upon TCR stimulation.

19.
Cell Commun Signal ; 11(1): 37, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23714586

RESUMO

BACKGROUND: The endothelial specific cell-cell adhesion molecule, VE-cadherin, modulates barrier function and vascular homeostasis. In this context, we have previously characterized that VEGF (vascular endothelial growth factor) leads to VE-cadherin phosphorylation, ß-arrestin2 recruitment and VE-cadherin internalization in mouse endothelial cells. However, exactly how this VE-cadherin/ß-arrestin complex contributes to VEGF-mediated permeability in human endothelial cells remains unclear. In this study, we investigated in-depth the VE-cadherin/ß-arrestin interactions in human endothelial cells exposed to VEGF. FINDINGS: First, we demonstrated that VEGF induces VE-cadherin internalization in a clathrin-dependent manner in human umbilical vein endothelial cells (HUVEC). In addition to the classical components of endocytic vesicles, ß-arrestin1 was recruited and bound to phosphorylated VE-cadherin. Molecular mapping of this interaction uncovered that the C-terminus tail of ß-arrestin1, that comprises amino acids 375 to 418, was sufficient to directly interact with the phosphorylated form of VE-cadherin. Interestingly, the expression of the C-terminus tail of ß-arrestin1 induced loss of surface exposed-VE-cadherin, promoted monolayer disorganization and enhanced permeability. Finally, this effect relied on decreased VE-cadherin expression at the transcriptional level, through inhibition of its promoter activity. CONCLUSIONS: Altogether, our results demonstrate that ß-arrestin1 might play multiple functions collectively contributing to endothelial barrier properties. Indeed, in addition to a direct implication in VE-cadherin endocytosis, ß-arrestin1 could also control VE-cadherin transcription and expression. Ultimately, understanding the molecular mechanisms involved in VE-cadherin function might provide therapeutic tools for many human diseases where the vascular barrier is compromised.

20.
EMBO Rep ; 12(5): 470-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21460795

RESUMO

Glioma stem-cells are associated with the brain vasculature. However, the way in which this vascular niche regulates stem-cell renewal and fate remains unclear. Here, we show that factors emanating from brain endothelial cells positively control the expansion of long-term glioblastoma stem-like cells. We find that both pharmacological inhibition of and RNA interference with the mammalian target of rapamycin (mTOR) pathway reduce their spheroid growth. Conversely, the endothelial secretome is sufficient to promote this mTOR-dependent survival. Thus, interfering with endothelial signals might present opportunities to identify treatments that selectively target malignant stem-cell niches.


Assuntos
Encéfalo/citologia , Células Endoteliais/metabolismo , Glioblastoma/fisiopatologia , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Western Blotting , Encéfalo/irrigação sanguínea , Citometria de Fluxo , Furanos/farmacologia , Humanos , Microscopia de Fluorescência , Piridinas/farmacologia , Pirimidinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Sirolimo/farmacologia , Células-Tronco/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA