Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139661

RESUMO

The magnetoelectric effect (ME) is an important strain mediated-phenomenon in a ferromagnetic-piezoelectric composite for a variety of sensors and signal processing devices. A bias magnetic field, in general, is essential to realize a strong ME coupling in most composites. Magnetic phases with (i) high magnetostriction for strong piezomagnetic coupling and (ii) large anisotropy field that acts as a built-in bias field are preferred so that miniature, ME composite-based devices can operate without the need for an external magnetic field. We are able to realize such a magnetic phase with a composite of (i) barium hexaferrite (BaM) with high magnetocrystalline anisotropy field and (ii) nickel ferrite (NFO) with high magnetostriction. The BNx composites, with (100 - x) wt.% of BaM and x wt.% NFO, for x = 0-100, were prepared. X-ray diffraction analysis shows that the composites did not contain any impurity phases. Scanning electron microscopy images revealed that, with an increase in NFO content, hexagonal BaM grains become prominent, leading to a large anisotropy field. The room temperature saturation magnetization showed a general increase with increasing BaM content in the composites. NFO rich composites with x ≥ 60 were found to have a large magnetostriction value of around -23 ppm, comparable to pure NFO. The anisotropy field HA of the composites, determined from magnetization and ferromagnetic resonance (FMR) measurements, increased with increasing NFO content and reached a maximum of 7.77 kOe for x = 75. The BNx composite was cut into rectangular platelets and bonded with PZT to form the bilayers. ME voltage coefficient (MEVC) measurements at low frequencies and at mechanical resonance showed strong coupling at zero bias for samples with x ≥ 33. This large in-plane HA acted as a built-in field for strong ME effects under zero external bias in the bilayers. The highest zero-bias MEVC of ~22 mV/cm Oe was obtained for BN75-PZT bilayers wherein BN75 also has the highest HA. The Bilayer of BN95-PZT showed a maximum MEVC ~992 mV/cm Oe at electromechanical resonance at 59 kHz. The use of hexaferrite-spinel ferrite composite to achieve strong zero-bias ME coupling in bilayers with PZT is significant for applications related to energy harvesting, sensors, and high frequency devices.

2.
Sci Rep ; 13(1): 1179, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670190

RESUMO

This work is on the design, fabrication and characterization of a hexagonal ferrite band-pass filter that can be tuned either with a magnetic field or an electric field. The filter operation is based on a straight-edge Y-type hexagonal ferrite resonator symmetrically coupled to the input and output microstrip transmission lines. The Zn2Yfilter demonstrated magnetic field tunability in the 8-12 GHz frequency range by applying an in-plane bias magnetic field H0 provided by a built-in permanent magnet. The insertion loss and 3 dB bandwidth within this band were 8.6 ± 0.4 dB and 350 ± 40 MHz, respectively. The electric field E tunability of the pass-band of the device was facilitated by the nonlinear magnetoelectric effect (NLME) in the ferrite. The E-tuning of the center frequency of the filter by (1150 ± 90) MHz was obtained for an input DC electric power of 200 mW. With efforts directed at a significant reduction in the insertion loss, the compact and power efficient magnetic and electric field tunable Zn2Y band-pass filter has the potential for use in novel reconfigurable RF/microwave devices and communication systems.

3.
Sci Rep ; 13(1): 18346, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884633

RESUMO

The nature of nonlinear magnetoelectric (NLME) effect has been investigated at room-temperature in a single-crystal Zn substituted nickel ferrite. Tuning of the frequency of magnetostatic surface wave (MSSW) modes under an applied pulsed DC electric field/current has been utilized to probe the effect. The frequencies of the modes at 8-20 GHz were found to decrease by ~ 400 MHz for an applied DC power P of ~ 100 mW and the frequency shift was the same for all of the MSSW modes and linearly proportional to P. A model is proposed for the effect and the NLME phenomenon was interpreted in terms of a reduction in the saturation magnetization due to the DC current. The decrease of magnetization with applied electric power, estimated from data on mode frequency versus P, was - 2.50 G/mW. The frequency tuning efficiency of the MSSW modes due to NLME effects in the ferrite resonator was found to be 4.1 MHz/mW which is an order of magnitude higher than the shift reported for M-type strontium and barium hexaferrite resonators investigated earlier. The spinel ferrite resonator discussed here has the potential for miniature, electric field tunable, planar microwave devices for the 8-20 GHz frequency range.

4.
Sci Rep ; 12(1): 7052, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35488114

RESUMO

This work focuses on the nature of magnetic anisotropy in 2.5-16 micron thick films of nickel ferrite (NFO) grown by liquid phase epitaxy (LPE). The technique, ideal for rapid growth of epitaxial oxide films, was utilized for films on (100) and (110) substrates of magnesium gallate (MGO). The motivation was to investigate the dependence of the growth induced anisotropy field on film thickness since submicron films of NFO were reported to show a very high anisotropy. The films grown at 850-875 C and subsequently annealed at 1000 C were found to be epitaxial, with the out-of-plane lattice constant showing unanticipated decrease with increasing film thickness and the estimated in-plane lattice constant increasing with the film thickness. The uniaxial anisotropy field Hσ, estimated from X-ray diffraction data, ranged from 2.8-7.7 kOe with the films on (100) MGO having a higher Hσ value than for the films on (110) MGO. Ferromagnetic resonance (FMR) measurements for in-plane and out-of-plane static magnetic field were utilized to determine both the magnetocrystalline the anisotropy field H4 and the uniaxial anisotropy field Ha. Values of H4 range from -0.24 to -0.86 kOe. The uniaxial anisotropy field Ha was an order of magnitude smaller than Hσ and it decreased with increasing film thickness for NFO films on (100) MGO, but Ha increased with film thickness for films on (110) MGO substrates. These observations indicate that the origin of the induced anisotropy could be attributed to several factors including (i) strain due to mismatch in the film-substrate lattice constants, (ii) possible variations in the bond lengths and bond angles in NFO during the growth process, and (iii) the strain arising from mismatch in the thermal expansion coefficients of the film and the substrate due to the high growth and annealing temperatures involved in the LPE technique. The LPE films of NFO on MGO substrates studied in this work are of interest for use in high frequency devices.

5.
Sci Rep ; 10(1): 12548, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724049

RESUMO

We demonstrate the magnetically-induced transparency (MIT) effect in Y[Formula: see text]Fe[Formula: see text]O[Formula: see text](YIG)/Permalloy (Py) coupled bilayers. The measurement is achieved via a heterodyne detection of the coupled magnetization dynamics using a single wavelength that probes the magneto-optical Kerr and Faraday effects of Py and YIG, respectively. Clear features of the MIT effect are evident from the deeply modulated ferromagnetic resonance of Py due to the perpendicular-standing-spin-wave of YIG. We develop a phenomenological model that nicely reproduces the experimental results including the induced amplitude and phase evolution caused by the magnon-magnon coupling. Our work offers a new route towards studying phase-resolved spin dynamics and hybrid magnonic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA