RESUMO
PURPOSE: For locally-acting dry powder inhalers (DPIs), developing novel analytical tools that are able to evaluate the state of aggregation may provide a better understanding of the impact of material properties and processing parameters on the in vivo performance. This study explored the utility of the Morphologically-Directed Raman Spectroscopy (MDRS) and dissolution as orthogonal techniques to assess microstructural equivalence of the aerosolized dose of DPIs collected with an aerosol collection device. METHODS: Commercial DPIs containing different strengths of Fluticasone Propionate (FP) and Salmeterol Xinafoate (SX) as monotherapy and combination products were sourced from different regions. These inhalers were compared with aerodynamic particle size distribution (APSD), dissolution, and MDRS studies. RESULTS: APSD testing alone might not be able to explain differences reported elsewhere in in vivo studies of commercial FP/SX drug products with different Advair® strengths and/or batches. Dissolution studies demonstrated different dissolution rates between Seretide™ 100/50 and Advair® 100/50, whereas Flixotide™ 100 and Flovent® 100 had similar dissolution rates between each other. These differences in dissolution profiles were supported by MDRS results: the dissolution rate is increased if the fraction of FP associated with high soluble components is increased. Principle component analysis was used to identify the agglomerate classes that better discriminate different products. CONCLUSIONS: MDRS and dissolution studies of the aerosolized dose of DPIs were successfully used as orthogonal techniques. This study highlights the importance of further assessing in vitro tools that are able to provide a bridge between material attributes or process parameters and in vivo performance.
RESUMO
To assess bioequivalence of locally acting suspension-based nasal sprays, the U.S. FDA currently recommends a weight-of-evidence approach. In addition to in vitro and human pharmacokinetic (PK) studies, this includes a comparative clinical endpoint study to ensure equivalent bioavailability of the active pharmaceutical ingredient (API) at the site of action. The present study aimed to assess, within an in vitro/in vivo correlation paradigm, whether PK studies and dissolution kinetics are sensitive to differences in drug particle size for a locally acting suspension-based nasal spray product. Two investigational suspension-based nasal formulations of mometasone furoate (MF-I and MF-II; delivered dose: 180 µg) differed in API particle size and were compared in a single-center, double-blind, single-dose, randomized, two-way crossover PK study in 44 healthy subjects with oral charcoal block. Morphology-directed Raman spectroscopy yielded volume median diameters of 3.17 µm for MF-I and 5.50 µm for MF-II, and dissolution studies showed that MF-II had a slower dissolution profile than MF-I. The formulation with larger API particles (MF-II) showed a 45% smaller Cmax and 45% smaller AUC0-inf compared to those of MF-I. Systemic bioavailability of MF-I (2.20%) and MF-II (1.18%) correlated well with the dissolution kinetics, with the faster dissolving formulation yielding the higher bioavailability. This agreement between pharmacokinetics and dissolution kinetics cross-validated both methods and supported their use in assessing potential differences in slowly dissolving suspension-based nasal spray products.
Assuntos
Sprays Nasais , Humanos , Disponibilidade Biológica , Furoato de Mometasona/farmacocinética , Tamanho da Partícula , Equivalência Terapêutica , Método Duplo-Cego , Estudos Cross-OverRESUMO
Doxorubicin (DOX) is a chemotherapeutic agent broadly used in the treatment of a range of solid tumors. In spite of its high potency, as is the case for many other chemotherapeutic drugs, there are many challenges associated with the use of DOX in clinical oncology. This is particularly true for DOX in the treatment of lung cancer, where in vitro potency is shown to be very high, but low lung distribution and off-target toxicity (particularly cardiotoxicity) restrict its use. Nanocarrier-based drug delivery systems (nanoDDS) have been shown to help alter biodistribution and alleviate off-target toxicity associated with DOX. While significant understanding exists regarding the design parameters to achieve those clinical benefits, much less is known regarding the design of nanoDDS capable of enhancing tumor penetration of DOX (and other drugs), which is another major factor leading to DOX's reduced efficacy. The purpose of this study was to design a dendrimer-based nanoDDS capable of enhancing the penetration of DOX as measured in an in vitro 3D lung tumor model and to correlate those results with its efficacy. Spheroids formed with the A549 human lung adenocarcinoma cells/murine fibroblast cell line (NIH/3T3 cell line) are shown to produce the essential components of the extracellular matrix (ECM), which is known as a physical barrier that hinders the transport of DOX. DOX was conjugated to generation 4 succinamic acid-terminated poly(amido-amine) (PAMAM) dendrimers (G4SA) through an enzyme-liable tetrapeptide (G4SA-GFLG-DOX), resulting in a nanoDDS with â¼5.5 DOX, -17 mV surface (ζ) potential, and a 10 nm hydrodynamic diameter (HD). The penetration of DOX to the core of the spheroid in terms of DOX fluorescence was determined to be 3.1-fold greater compared to free DOX, which positively correlated with enhanced efficacy as measured by the Caspase 3/7 assay. This improved penetration happens as the interactions between the G4SA-GFLG-DOX and the highly negatively charged ECM are minimized by shielding the protonatable amine of DOX upon conjugation, and the HD of the conjugate is kept smaller than the estimated mesh size of the ECM. Interestingly, the conjugate provided more specificity for DOX to tumor cells compared to fibroblasts, while free DOX is equally distributed in both tumor and fibroblasts as assessed in the coculture spheroids. Growth inhibition studies show that the released DOX maintains its activity and leads to tumor reduction to the same extent as free DOX. The results obtained here are of relevance for the design of dendrimer-based nanoDDS and for the treatment of solid tumors as they provide critical information regarding desirable surface characteristics and sizes for efficient tumor penetration.
Assuntos
Dendrímeros/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Matriz Extracelular/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Animais , Núcleo Celular/metabolismo , Técnicas de Cocultura , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Humanos , Camundongos , Células NIH 3T3 , Esferoides CelularesRESUMO
The lungs are major sites of metastases for several cancer types, including breast cancer (BC). Prognosis and quality of life of BC patients that develop pulmonary metastases are negatively impacted. The development of strategies to slow the growth and relieve the symptoms of BC lung metastases (BCLM) is thus an important goal in the management of BC. However, systemically administered first line small molecule chemotherapeutics have poor pharmacokinetic profiles and biodistribution to the lungs and significant off-target toxicity, severely compromising their effectiveness. In this work, we propose the local delivery of add-on immunotherapy to the lungs to support first line chemotherapy treatment of advanced BC. In a syngeneic murine model of BCLM, we show that local pulmonary administration (p.a.) of PLX-3397 (PLX), a colony-stimulating factor 1 receptor inhibitor (CSF-1Ri), is capable of overcoming physiological barriers of the lung epithelium, penetrating the tumor microenvironment (TME), and decreasing phosphorylation of CSF-1 receptors, as shown by the Western blot of lung tumor nodules. That inhibition is accompanied by an overall decrease in the abundance of protumorigenic (M2-like) macrophages in the TME, with a concomitant increase in the amount of antitumor (M1-like) macrophages when compared to the vehicle-treated control. These effects with PLX (p.a.) were achieved using a much smaller dose (1 mg/kg, every other day) compared to the systemic doses typically used in preclinical studies (40-800 mg/kg/day). As an additive in combination with intravenous (i.v.) administration of paclitaxel (PTX), PLX (p.a.) leads to a decrease in tumor burden without additional toxicity. These results suggested that the proposed immunochemotherapy, with regional pulmonary delivery of PLX along with the i.v. standard of care chemotherapy, may lead to new opportunities to improve treatment, quality of life, and survival of patients with BCLM.
Assuntos
Aminopiridinas/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Pirróis/administração & dosagem , Macrófagos Associados a Tumor/efeitos dos fármacos , Administração por Inalação , Administração Intravenosa , Aminopiridinas/farmacocinética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Camundongos , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Fosforilação/efeitos dos fármacos , Pirróis/farmacocinética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologiaRESUMO
Pulmonary administration of polymer drug conjugates is of great potential clinical significance for treating lung cancer as such regimen significantly increases local drug concentrations while decreases systemic and local side effects. In this work, we demonstrate that nanoparticles prepared with methoxypoly(ethylene glycol) (mPEG)-doxorubicin (DOX) conjugates (mPEG-DOX) that have a pH-sensitive imine bond (Schiff base) can at the same time work as efficient carriers for DOX to kill cancer cells and also as a strategy to directly formulate nanoparticles in propellant-based inhalers. Nanoparticles prepared by precipitation in water had a diameter in the range between 100 and 120 nm. We investigated the effects of molecular weight (MW) of mPEG (1K, 2K, and 5K Da) on the in vitro release kinetics, cellular internalization, and cytotoxicity on in vitro model of lung adenocarcinoma and aerosol characters. It is observed that the DOX released from mPEG-DOX nanoparticles was significantly accelerated in acidic environment, pH 5.5 (endosomal/lysosomal pH) in comparison with pH 7.4 (physiological pH), as designed. Release of DOX from mPEG1K-DOX nanoparticles was significantly greater than those from mPEG2K and mPEG5K counterparts. In vitro cytotoxicity of nanoparticles followed the sequence of mPEG1K-DOX > free DOX > mPEG2K-DOX â« mPEG5K-DOX, a trend closely following their rate and extent of cellular internalization. mPEG-DOX nanoparticles with mPEG1K and mPEG2K were directly dispersed in hydrofluoroalkane (HFA), while a trace of ethanol was required to disperse mPEG5K-DOX nanoparticles in HFA. These pMDI formulations with high physical stability in HFAs display superior aerosol characteristics conducive to deep lung deposition. The fine particle fractions of these formulations ranged from 40-60%, higher than those of commercial products. Such formulations prepared from nanoparticles of pH-sensitive PEG-drug conjugates may also be envisioned to be extended to formulate other hydrophobic drugs for local delivery with propellant-based inhalers to other pulmonary disorders, thus broadening the impact of the proposed strategy.
Assuntos
Adenocarcinoma/metabolismo , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Pulmonares/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Nebulizadores e Vaporizadores , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Concentração de Íons de Hidrogênio , Polietilenoglicóis/químicaRESUMO
Lung is one of the most common sites to which almost all other primary tumors metastasize. The major challenges in the chemotherapy of lung metastases include the low drug concentration found in the tumors and high systemic toxicity upon systemic administration. In this study, we combine local lung delivery and the use of nanocarrier-based systems for improving pharmacokinetics and biodistribution of the therapeutics to fight lung metastases. We investigate the impact of the conjugation of doxorubicin (DOX) to carboxyl-terminated poly(amidoamine) dendrimers (PAMAM) through a bond that allows for intracellular-triggered release, and the effect of pulmonary delivery of the dendrimer-DOX conjugate in decreasing tumor burden in a lung metastasis model. The results show a dramatic increase in efficacy of DOX treatment of the melanoma (B16-F10) lung metastasis mouse model upon pulmonary administration of the drug, as indicated by decreased tumor burden (lung weight) and increased survival rates of the animals (male C57BL/6) when compared to iv delivery. Conjugation of DOX further increased the therapeutic efficacy upon lung delivery as indicated by the smaller number of nodules observed in the lungs when compared to free DOX. These results are in agreement with the biodistribution characteristics of the DOX upon pulmonary delivery, which showed a longer lung accumulation/retention compared to iv administration. The distribution of DOX to the heart tissue is also significantly decreased upon pulmonary administration, and further decreased upon conjugation. The results show, therefore, that pulmonary administration of DOX combined to conjugation to PAMAM dendrimer through an intracellular labile bond is a potential strategy to enhance the therapeutic efficacy and decrease systemic toxicity of DOX.
Assuntos
Dendrímeros/química , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Masculino , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Many clinically relevant diseases with known poor therapeutic outcomes, including cancer and neurodegenerative disorders, have been directly linked to mitochondrial dysfunction. The ability to efficiently target therapeutics to intracellular organelles such as mitochondria may represent new opportunities for the effective treatment of such ailments. The present study reports the synthesis, cellular uptake, cytotoxicity, and mitochondrial colocalization of conjugates of triphenylphosphonium cation (TPP) to amine-terminated, generation 4, poly(amidoamine) (PAMAM) dendrimer (G4NH2) nanocarriers. The mitochondrial-targeting moiety TPP was either directly conjugated to G4NH2 (G4NH2-TPP) or to the dendrimer through a flexible polyethylene glycol (PEG) linker (G4NH2-PEGTPP). Conjugation was done at various TPP densities to assess their biological activity and potential for mitochondrial-targeted drug delivery. Tests in an in vitro model of the human alveolar carcinoma (A549 cells) showed that even at a low TPP density (â¼5 TPP) both the cellular internalization and mitochondrial targeting increase significantly, as determined by fluorescence activated cell sorting (FACS) and confocal microscopy (CM), respectively. At a density of â¼10 TPP per G4NH2, further increase in cellular internalization and mitochondrial targeting was achieved. However, at this higher density, the nanocarriers also showed pronounced cytotoxicity. It was observed that the toxicity of the conjugates is decreased upon the addition of a PEG linker between the dendrimer and TPP (G4NH2-PEGTPP), while the mitochondrial targeting ability of the nanocarriers is not affected as the PEG density increases. The proposed strategies indicate that TPP-conjugated G4NH2 dendrimers represent a potentially viable strategy for the targeting of therapeutic molecules to mitochondria, which may help improve therapeutic outcomes of diseases related to mitochondrial dysfunction.
Assuntos
Apoptose/efeitos dos fármacos , Dendrímeros/farmacologia , Sistemas de Liberação de Medicamentos , Neoplasias Pulmonares/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/química , Poliaminas/farmacologia , Portadores de Fármacos/química , Humanos , Neoplasias Pulmonares/patologia , Mitocôndrias/patologia , Polietilenoglicóis/química , Células Tumorais CultivadasRESUMO
TRIOBP is an actin-bundling protein. Mutations of TRIOBP are associated with human deafness DFNB28. In vitro, TRIOBP isoform 4 (TRIOBP-4) forms dense F-actin bundles resembling the inner ear hair cell rootlet structure. Deletion of TRIOBP isoforms 4 and 5 leads to hearing loss in mice due to the absence of stereocilia rootlets. The mechanism of actin bundle formation by TRIOBP is not fully understood. The amino acid sequences of TRIOBP isoforms 4 and 5 contain two repeated motifs, referred to here as R1 and R2. To examine the potential role of R1 and R2 motifs in F-actin binding, we generated TRIOBP-4 mutant proteins deleted for R1 and/or R2, and then assessed their actin-binding activity and bundle formation in vitro using actin cosedimentation assays, and fluorescence and electron microscopy. Cellular distributions of the TRIOBP-4 mutants were examined by confocal microscopy. We showed that deletion of both R1 and R2 motifs completely disrupted the actin binding/bundling activities of TRIOBP-4 and impaired its localization to cellular actin cytoskeleton structures. By contrast, TRIOBP-4, lacking only R2 motif, retained its F-actin bundling ability and remained localized to actin filaments in cells, similar to full length TRIOBP-4. On the contrary, the R1 motif-deleted TRIOBP-4 mutant, which mainly consists of the R2 motif, formed thin F-actin bundles in vitro but failed to colocalize to actin filaments in cells. These results indicate that R1 motif is the major actin-binding domain of TRIOBP-4, and the binding of R2 motif with actin filaments is nonspecific.
Assuntos
Actinas/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Camundongos , Proteínas dos Microfilamentos/genética , Dados de Sequência Molecular , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte ProteicoRESUMO
Dry powder inhalers (DPIs) are drug-device combination products where the complexity of the formulation, its interaction with the device, and input from users play important roles in the drug delivery. As the landscape of DPI products advances with new powder formulations and novel device designs, understanding how these advancements impact performance can aid in developing generics that are therapeutically equivalent to the reference listed drug (RLD) products. This review details the current understanding of the formulation and device related principles driving DPI performance, past and present research efforts to characterize these performance factors, and the implications that advances in formulation and device design may present for evaluating bioequivalence (BE) for generic development.
RESUMO
Regulatory science for generic dry powder inhalation products worldwide has evolved over the last decade. The revised draft guidance Metered Dose Inhaler (MDI) and Dry Powder Inhaler (DPI) Products - Quality Considerations [1] (Revision 1, April 2018) that FDA issued summarizes product considerations and potential critical quality attributes (CQAs). This guidance emphasizes the need to apply the principles of quality by design (QbD) and elements of pharmaceutical development discussed in the International Conference for Harmonisation of (ICH) guidelines. Research studies related to quality were used to support guidance recommendations, which preceded the first approval of a generic DPI product in the U.S. This review outlines scientific and regulatory hurdles that need to be surmounted to successfully bring a generic DPI to the market. The goal of this review focuses on relevant issues and various challenges pertaining to CMC topics of the generic DPI quality attributes. Furthermore, this review provides recommendations to abbreviated new drug application (ANDA) applicants to expedite generic approvals.
Assuntos
Inaladores de Pó Seco , Inaladores Dosimetrados , Administração por Inalação , Medicamentos Genéricos , Humanos , Pós , Estados Unidos , United States Food and Drug AdministrationRESUMO
Regulatory science for generic dry powder inhalers (DPIs) in the United States (U.S.) has evolved over the last decade. In 2013, the U.S. Food and Drug Administration (FDA) published the draft product-specific guidance (PSG) for fluticasone propionate and salmeterol xinafoate inhalation powder. This was the first PSG for a DPI available in the U.S., which provided details on a weight-of-evidence approach for establishing bioequivalence (BE). A variety of research activities including in vivo and in vitro studies were used to support these recommendations, which have led to the first approval of a generic DPI in the U.S. for fluticasone propionate and salmeterol xinafoate inhalation powder in January of 2019. This review describes the scientific and regulatory activities that have been initiated by FDA to support the current BE recommendations for DPIs that led to the first generic DPI approvals, as well as research with novel in vitro and in silico methods that may potentially facilitate generic DPI development and approval.
Assuntos
Medicamentos Genéricos , Inaladores de Pó Seco , Administração por Inalação , Fluticasona , Humanos , Pós , Xinafoato de Salmeterol , Equivalência Terapêutica , Estados Unidos , United States Food and Drug AdministrationRESUMO
Herein, we present the US Food and Drug Administration (FDA) Office of Research and Standards' current thinking, challenges, and opportunities for comparative clinical endpoint bioequivalence (BE) studies of orally inhaled drug products (OIDPs). Given the product-associated complexities of OIDPs, the FDA currently uses an aggregate weight-of-evidence approach to demonstrate that a generic OIDP is bioequivalent to its reference listed drug. The approach utilizes comparative clinical endpoint BE or pharmacodynamic BE studies, pharmacokinetic BE studies, and in vitro BE studies to demonstrate equivalence, in addition to formulation sameness and device similarity. For the comparative clinical endpoint BE studies, metrics based on forced expiratory volume in the first second (FEV1 ) are often the recommended clinical endpoints. However, the use of FEV1 can pose a challenge due to its large variability and a relatively flat dose-response relationship for most OIDPs. The utility of applying dose-scale analysis was also investigated by the FDA but often not recommended, due to either flat dose-response relationships or insufficient clinical study data. As a potential way to reduce sample size, we found adapting covariate analysis only explained a limited portion of the variation based on further investigation. The FDA continues to develop alternative methods to make BE assessment of OIDPs more cost- and time-efficient. Prospective generic drug applicants and academia are encouraged to participate in this effort by proposing new approaches in pre-abbreviated new drug application meeting requests and collaborating in the form of grants and contracts under the Generic Drug User Fee Amendments (GDUFA) Regulatory Science and Research Program.
Assuntos
Medicamentos Genéricos , Humanos , Estados Unidos , Equivalência Terapêutica , Medicamentos Genéricos/farmacocinética , Volume Expiratório Forçado , Preparações Farmacêuticas , United States Food and Drug AdministrationRESUMO
Demonstrating bioequivalence (BE) of nasal suspension sprays is a challenging task. Analytical tools are required to determine the particle size of the active pharmaceutical ingredient (API) and the structure of a relatively complex formulation. This study investigated the utility of the morphologically-directed Raman spectroscopy (MDRS) method to investigate the particle size distribution (PSD) of nasal suspensions. Dissolution was also investigated as an orthogonal technique. Nasal suspension formulations containing different PSD of mometasone furoate monohydrate (MFM) were manufactured. The PSD of the MFM batches was characterized before formulation manufacture using laser diffraction and automated imaging. Upon formulation manufacture, the droplet size, single actuation content, spray pattern, plume geometry, the API dissolution rate, and the API PSD by MDRS were determined. A systematic approach was utilized to develop a robust method for the analysis of the PSD of MFM in Nasonex® and four test formulations containing the MFM API with different particle size specifications. Although the PSD between distinct techniques cannot be directly compared due to inherent differences between these methodologies, the same trend is observed for three out of the four batches. Dissolution analysis confirmed the trend observed by MDRS in terms of PSD. For suspension-based nasal products, MDRS allows the measurement of API PSD which is critical for BE assessment. This approach has been approved for use in lieu of a comparative clinical endpoint BE study [1]. The correlation observed between PSD and dissolution rate extends the use of dissolution as a critical analytical tool demonstrating BE between test and reference products.
Assuntos
Furoato de Mometasona/farmacocinética , Administração Intranasal , Furoato de Mometasona/administração & dosagem , Furoato de Mometasona/química , Tamanho da Partícula , Análise Espectral Raman , Suspensões , Equivalência TerapêuticaRESUMO
Every year, complications during pregnancy affect more than 26 million women. Some of those diseases are associated with significant morbidity and mortality, as is the case of preeclampsia, the main cause of maternal deaths globally. The ability to improve the delivery of drugs to the placenta upon administration to the mother may offer new opportunities in the treatment of diseases of pregnancy. The objective of this study was to develop megalin-targeting liposome nanocarriers for placental drug delivery. Megalin is a transmembrane protein involved in clathrin-mediated endocytic processes, and is expressed in the syncytiotrophoblast (SynT), an epithelial layer at maternal-fetal interface. Targeting megalin thus offers an opportunity for the liposomes to hitchhike into the SynT, thus enriching the concentration of any associated therapeutic cargo in the placental tissue. PEGylated (2 KDa) lipids were modified with gentamicin (GM), a substrate to megalin receptors as we have shown in earlier studies, and used to prepare placental-targeting liposomes. The ability of the targeting liposomes to enhance accumulation of a fluorescence probe was assessed in an in vivo placental model - timed-pregnant Balb/c mice at gestational day (GD) 18.5. The targeting liposomes containing 10 mol% GM-modified lipids increased the accumulation of the conjugated fluorescence probe in the placenta with a total accumulation of 2.8% of the initial dose, which corresponds to a 94 fold increase in accumulation compared to the free probe (p < .0001), and 2-4 fold accumulation compared to the non-targeting control liposomes (p < .0001), as measured by both tissue extraction assay and ex vivo imaging. Furthermore, confocal images of placental SynT cross-sections show a 3-fold increase of the targeting liposomes compared with the non-targeting liposomes. The rate and extent of uptake of a fluorescent probe encapsulated within targeting liposomes was also probed in an in vitro model of the human placental barrier (polarized BeWo monolayers) using flow cytometry. Targeting liposomes containing 5 mol% GM-modified lipids enhanced the uptake of the probe by 1.5 fold compared to the non-targeting control. An increase to 10 mol% of the modified lipid resulted in further enhancement in uptake, which was 2 fold greater compared to control. In a competition assay, inhibition of the megalin receptors resulted in a significant reduction in uptake of the fluorescence probe encapsulated in GM-modified liposomes compared to the uptake without free inhibitor (p < .0001), implicating the involvement of megalin receptor in the internalization of the liposomes. Taken together, these results demonstrate that megalin-targeted liposomes may offer an opportunity to enhance the delivery of therapeutics to the placenta for the treatment of diseases of pregnancy.
Assuntos
Lipossomos , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Animais , Sistemas de Liberação de Medicamentos , Feminino , Gentamicinas , Placenta , GravidezRESUMO
The regulation of genes utilizing the RNA interference (RNAi) mechanism via the delivery of synthetic siRNA has great potential in the treatment of a variety of lung diseases. However, the delivery of siRNA to the lungs is challenging due to the poor bioavailability of siRNA when delivered intraveneously, and difficulty in formulating and maintaining the activity of free siRNA when delivered directly to the lungs using inhalation devices. The use of non-viral vectors such as cationic dendrimers can help enhance the stability of siRNA and its delivery to the cell cytosol. Therefore, in this work, we investigate the ability of a triphenylphosphonium (TPP) modified generation 4 poly(amidoamine) (PAMAM) dendrimer (G4NH2-TPP) to enhance the in vitro transfection efficiency of siRNA in a model of the pulmonary epithelium and their aerosol formulations in pressurized metered dose inhalers (pMDIs) and dry powder inhalers (DPIs). Complexes of siRNA and G4NH2-TPP were prepared with varying TPP densities and increasing N/P ratios. The complexation efficiency was modulated by the presence of the TPP on the dendrimer surface, allowing for a looser complexation compared to unmodified dendrimer as determined by gel electrophoresis and polyanion competition assay. An increase in TPP density and N/P ratio led to an increase in the in vitro gene knockdown of stably green fluorescent protein (eGFP) expressing lung alveolar epithelial (A549) cells. G4NH2-12TPP dendriplexes (G4NH2 PAMAM dendrimers containing 12 TPP molecules on the surface complexed with siRNA) at N/P ratio 30 showed the highest in vitro gene knockdown efficiency. To assess the potential of TPP-dendriplexes for pulmonary use, we also developed micron particle technologies for both pMDIs and DPIs and determined their aerosol characteristics utilizing an Andersen Cascade Impactor (ACI). Mannitol microparticles encapsulating 12TPP-dendriplexes were shown to be effective in producing aerosols suitable for deep lung deposition for both pMDI formulations (fine particle fraction of 50-53%) and DPI formulations (fine particle fraction of 39%) with no impact on the in vitro gene knockdown efficiency of the siRNA. This work demonstrates the potential benefits of utilizing TPP-conjugated dendrimers in the formation of dendriplexes for siRNA delivery to the pulmonary epithelium and their aerosol formulation for local delivery to the lungs using portable inhalers.