Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Microsc Microanal ; 29(5): 1730-1745, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37584515

RESUMO

The most common form of epilepsy among adults is mesial temporal lobe epilepsy (mTLE), with seizures often originating in the hippocampus due to abnormal electrical activity. The gold standard for the histopathological analysis of mTLE is histology, which is a two-dimensional technique. To fill this gap, we propose complementary three-dimensional (3D) X-ray histology. Herein, we used synchrotron radiation-based phase-contrast microtomography with 1.6 µm-wide voxels for the post mortem visualization of tissue microstructure in an intrahippocampal-kainate mouse model for mTLE. We demonstrated that the 3D X-ray histology of unstained, unsectioned, paraffin-embedded brain hemispheres can identify hippocampal sclerosis through the loss of pyramidal neurons in the first and third regions of the Cornu ammonis as well as granule cell dispersion within the dentate gyrus. Morphology and density changes during epileptogenesis were quantified by segmentations from a deep convolutional neural network. Compared to control mice, the total dentate gyrus volume doubled and the granular layer volume quadrupled 21 days after injecting kainate. Subsequent sectioning of the same mouse brains allowed for benchmarking 3D X-ray histology against well-established histochemical and immunofluorescence stainings. Thus, 3D X-ray histology is a complementary neuroimaging tool to unlock the third dimension for the cellular-resolution histopathological analysis of mTLE.

2.
Neuroimage ; 139: 26-36, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27321044

RESUMO

Histological examination achieves sub-micrometer resolution laterally. In the third dimension, however, resolution is limited to section thickness. In addition, histological sectioning and mounting sections on glass slides introduce tissue-dependent stress and strain. In contrast, state-of-the-art hard X-ray micro computed tomography (µCT) systems provide isotropic sub-micrometer resolution and avoid sectioning artefacts. The drawback of µCT in the absorption contrast mode for visualising physically soft tissue is a low attenuation difference between anatomical features. In this communication, we demonstrate that formalin-fixed paraffin-embedded human cerebellum yields appropriate absorption contrast in laboratory-based µCT data, comparable to conventional histological sections. Purkinje cells, for example, are readily visible. In order to investigate the pros and cons of complementary approaches, two- and three-dimensional data were manually and automatically registered. The joint histogram of histology and the related µCT slice allows for a detailed discussion on how to integrate two-dimensional information from histology into a three-dimensional tomography dataset. This methodology is not only rewarding for the analysis of the human cerebellum, but it also has relevance for investigations of tissue biopsies and post-mortem applications. Our data indicate that laboratory-based µCT as a modality can fill the gap between synchrotron radiation-based µCT and histology for a variety of tissues. As the information from haematoxylin and eosin (H&E) stained sections and µCT data is related, one can colourise local X-ray absorption values according to the H&E stain. Hence, µCT data can correlate and virtually extend two-dimensional (2D) histology data into the third dimension.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Técnicas de Preparação Histocitológica/métodos , Imageamento Tridimensional/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Microtomografia por Raio-X/métodos , Idoso , Algoritmos , Cadáver , Humanos , Masculino , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Biomed Opt Express ; 15(1): 142-161, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223169

RESUMO

In this study, we use synchrotron-based multi-modal X-ray tomography to examine human cerebellar tissue in three dimensions at two levels of spatial resolution (2.3 µm and 11.9 µm). We show that speckle-based imaging (SBI) produces results that are comparable to propagation-based imaging (PBI), a well-established phase-sensitive imaging method. The different SBI signals provide complementary information, which improves tissue differentiation. In particular, the dark-field signal aids in distinguishing tissues with similar average electron density but different microstructural variations. The setup's high resolution and the imaging technique's excellent phase sensitivity enabled the identification of different cellular layers and additionally, different cell types within these layers. We also correlated this high-resolution phase-contrast information with measured dark-field signal levels. These findings demonstrate the viability of SBI and the potential benefit of the dark-field modality for virtual histology of brain tissue.

4.
J Neurosci Methods ; 365: 109385, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637810

RESUMO

BACKGROUND: Fixation and embedding of post mortem brain tissue is a pre-requisite for both gold-standard conventional histology and X-ray virtual histology. This process alters the morphology and density of the brain microanatomy. NEW METHOD: To quantify these changes, we employed synchrotron radiation-based hard X-ray tomography with 3 µm voxel length to visualize the same mouse brain after fixation in 4% formalin, immersion in ethanol solutions (50%, 70%, 80%, 90%, and 100%), xylene, and finally after embedding in a paraffin block. The volumetric data were non-rigidly registered to the initial formalin-fixed state to align the microanatomy within the entire mouse brain. RESULTS: Volumetric strain fields were used to characterize local shrinkage, which was found to depend on the anatomical region and distance to external surface. X-ray contrast was altered and enhanced by preparation-induced inter-tissue density changes. The preparation step can be selected to highlight specific anatomical features. For example, fiber tract contrast is amplified in 100% ethanol. COMPARISON WITH EXISTING METHODS: Our method provides volumetric strain fields, unlike approaches based on feature-to-feature or volume measurements. Volumetric strain fields are produced by non-rigid registration, which is less labor-intensive and observer-dependent than volume change measurements based on manual segmentations. X-ray microtomography provides spatial resolution at least an order of magnitude higher than magnetic resonance microscopy, allowing for analysis of morphology and density changes within the brain's microanatomy. CONCLUSION: Our approach belongs to three-dimensional virtual histology with isotropic micrometer spatial resolution and therefore complements atlases based on a combination of magnetic resonance microscopy and optical micrographs of serial histological sections.


Assuntos
Encéfalo , Formaldeído , Animais , Encéfalo/diagnóstico por imagem , Camundongos , Inclusão em Parafina , Síncrotrons , Microtomografia por Raio-X/métodos
5.
Med Sci Monit ; 17(2): RA53-63, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21278704

RESUMO

One of the most serious complications of chronic or fulminant liver failure is hepatic encephalopathy (HE), associated most commonly with cirrhosis. In the presence of chronic liver disease, HE is a sign of decompensation, while in fulminant liver failure its development represents a worrying sign and usually indicates that transplantation will be required. Despite the significance of HE in the course of liver disease, the progress in development of new therapeutic options has been unremarkable over the last 20 years. An up-to-date review regarding HE, including both research and review articles. HE is a serious and progressive, but potentially reversible, disorder with a wide spectrum of neuropsychiatric abnormalities and motor disturbances that ranges from mild alteration of cognitive and motor function to coma and death. Although a clear pathogenesis is yet to be determined, elevated ammonia in serum and the central nervous system is the mainstay for pathogenesis and treatment of HE. Management includes early diagnosis and prompt treatment of precipitating factors. Clinical trials and extensive clinical experience have established the efficacy of diverse substances in HE treatment. Novel therapies with clinical promise include: L-ornithine L-aspartate, sodium benzoate, phenylacetate, AST-120, and the molecular adsorbent recirculating system. Eventually, liver transplantation is often the most successful long-term therapy for HE.


Assuntos
Encefalopatia Hepática/etiologia , Encefalopatia Hepática/terapia , Animais , Encefalopatia Hepática/complicações , Encefalopatia Hepática/fisiopatologia , Humanos
6.
J Neurosci Methods ; 364: 109354, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34529981

RESUMO

BACKGROUND: Micrometer-resolution neuroimaging with gold-standard conventional histology requires tissue fixation and embedding. The exchange of solvents for the creation of sectionable paraffin blocks modifies tissue density and generates non-uniform brain shrinkage. NEW METHOD: We employed synchrotron radiation-based X-ray microtomography for slicing- and label-free virtual histology of the mouse brain at different stages of the standard preparation protocol from formalin fixation via ascending ethanol solutions and xylene to paraffin embedding. Segmentation of anatomical regions allowed us to quantify non-uniform tissue shrinkage. Global and local changes in X-ray absorption gave insight into contrast enhancement for virtual histology. RESULTS: The volume of the entire mouse brain was 60%, 56%, and 40% of that in formalin for, respectively, 100% ethanol, xylene, and paraffin. The volume changes of anatomical regions such as the hippocampus, anterior commissure, and ventricles differ from the global volume change. X-ray absorption of the full brain decreased, while local absorption differences increased, resulting in enhanced contrast for virtual histology. These trends were also observed with laboratory microtomography measurements. COMPARISON WITH EXISTING METHODS: Microtomography provided sub-10 µm spatial resolution with sufficient density resolution to resolve anatomical structures at each step of the embedding protocol. The spatial resolution of conventional computed tomography and magnetic resonance microscopy is an order of magnitude lower and both do not match the contrast of microtomography over the entire embedding protocol. Unlike feature-to-feature or total volume measurements, our approach allows for calculation of volume change based on segmentation. CONCLUSION: We present isotropic micrometer-resolution imaging to quantify morphology and composition changes in a mouse brain during the standard histological preparation. The proposed method can be employed to identify the most appropriate embedding medium for anatomical feature visualization, to reveal the basis for the dramatic X-ray contrast enhancement observed in numerous embedded tissues, and to quantify morphological changes during tissue fixation and embedding.


Assuntos
Formaldeído , Imageamento Tridimensional , Animais , Encéfalo/diagnóstico por imagem , Camundongos , Inclusão em Parafina , Microtomografia por Raio-X
7.
Front Bioeng Biotechnol ; 9: 659413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239858

RESUMO

Background and purpose: Tumorous lesions developing in the cerebellopontine angle (CPA) get into close contact with the 1st (cisternal) and 2nd (meatal) intra-arachnoidal portion of the facial nerve (FN). When surgical damage occurs, commonly known reconstruction strategies are often associated with poor functional recovery. This article aims to provide a systematic overview for translational research by establishing the current evidence on available clinical studies and experimental models reporting on intracranial FN injury. Methods: A systematic literature search of several databases (PubMed, EMBASE, Medline) was performed prior to July 2020. Suitable articles were selected based on predefined eligibility criteria following the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines. Included clinical studies were reviewed and categorized according to the pathology and surgical resection strategy, and experimental studies according to the animal. For anatomical study purposes, perfusion-fixed adult New Zealand white rabbits were used for radiological high-resolution imaging and anatomical dissection of the CPA and periotic skull base. Results: One hundred forty four out of 166 included publications were clinical studies reporting on FN outcomes after CPA-tumor surgery in 19,136 patients. During CPA-tumor surgery, the specific vulnerability of the intracranial FN to stretching and compression more likely leads to neurapraxia or axonotmesis than neurotmesis. Severe FN palsy was reported in 7 to 15 % after vestibular schwannoma surgery, and 6% following the resection of CPA-meningioma. Twenty-two papers reported on experimental studies, out of which only 6 specifically used intracranial FN injury in a rodent (n = 4) or non-rodent model (n = 2). Rats and rabbits offer a feasible model for manipulation of the FN in the CPA, the latter was further confirmed in our study covering the radiological and anatomical analysis of perfusion fixed periotic bones. Conclusion: The particular anatomical and physiological features of the intracranial FN warrant a distinguishment of experimental models for intracranial FN injuries. New Zealand White rabbits might be a very cost-effective and valuable option to test new experimental approaches for intracranial FN regeneration. Flexible and bioactive biomaterials, commonly used in skull base surgery, endowed with trophic and topographical functions, should address the specific needs of intracranial FN injuries.

8.
Horm Cancer ; 9(3): 144-155, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29464548

RESUMO

Brain tumors are associated with increased mortality and morbidity and are the most common cancer type in children and young adults. The present review focuses on the interplay between leptin, the most extensively studied adipokine, and the onset, development, and treatment of primary brain and intracranial tumors. The two main mechanisms for increased leptin levels in intracranial tumor survivors, leptin resistance caused by hypothalamic damage, or secondary to obesity, are discussed. The contradicting mechanistic observations on leptin being able to both promote tumorinogenesis (e.g., in gliomas) as well as inhibit it (e.g., in adenomas) are also reported. Additionally, the relevant current and future clinical applications, including most notably the proposed use of serum leptin measurements for non-invasive brain tumor diagnostics, are also reported.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Neoplasias Hipofisárias/metabolismo , Animais , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Carcinogênese , Criança , Humanos , Hipotálamo/patologia , Leptina/uso terapêutico , Neoplasias Hipofisárias/diagnóstico , Neoplasias Hipofisárias/terapia , Prognóstico , Adulto Jovem
9.
J Neurosci Methods ; 295: 37-44, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29179953

RESUMO

BACKGROUND: We wanted to achieve a three-dimensional (3D), non-destructive imaging and automatic post-analysis and evaluation of reconstructed peripheral nerves without involving cutting and staining processes. NEW METHOD: We used a laboratory-based micro computed tomography system for imaging, as well as a custom analysis protocol. The sample preparation was also adapted in order to achieve 3D images with true micrometer resolution and suitable contrast. RESULTS: Analysis of the acquired tomograms enabled the quantitative assessment of 3D tissue structures, i.e., surface morphology, nerve fascicles, nerve tissue volume, geometry, and vascular regrowth. The resulting data showed significant differences between operated animals and non-operated controls. COMPARISON WITH EXISTING METHODS: Our approach avoids the sampling error associated with conventional 2D visualization approaches and holds promise for automation of the analysis of large series of datasets. CONCLUSIONS: We have presented a potential way for 3D imaging and analysis of entire regenerated nerves non-destructively, paving the way for high-throughput analysis of therapeutic conditions of treating adult nerve injuries.


Assuntos
Tecido Conjuntivo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Nervos Periféricos/diagnóstico por imagem , Nervos Periféricos/cirurgia , Procedimentos de Cirurgia Plástica , Microtomografia por Raio-X/métodos , Implantes Absorvíveis , Animais , Capilares/diagnóstico por imagem , Capilares/cirurgia , Tecido Conjuntivo/cirurgia , Feminino , Procedimentos Neurocirúrgicos , Ratos Sprague-Dawley
10.
J Neurosci Methods ; 294: 59-66, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29129635

RESUMO

BACKGROUND: Histological assessment of peripheral nerve regeneration in animals is tedious, time-consuming and challenging for three-dimensional analysis. NEW METHOD: The present study reports on how and to what extent micro computed tomography of paraffin-embedded samples can provide a reliable three-dimensional approach for quantitative analysis of peripheral nerves. RESULTS: Rat sciatic nerves were harvested, formalin-fixated, positioned into nerve conduits (NC), paraffin-embedded, and imaged using a laboratory-based X-ray microtomography system with an isotropic voxel length of 4µm. Suitable quantitative measures were identified and automatically evaluated, i.e. nerve length, cross-sectional area and volume, as well as vascular structures, to be used as an assessment and comparison indicator of regeneration quality. COMPARISON WITH EXISTING METHODS: Compared to imaging using contrast agents, the investigated specimens can subsequently undergo the conventional histological analysis without requiring additional preparation steps. Contrast and spatial resolution are also increased significantly. CONCLUSIONS: We demonstrate the potential of the micro computed tomography for non-destructive monitoring of peripheral nerves inside the conduits.


Assuntos
Imageamento Tridimensional/métodos , Nervo Isquiático/citologia , Microtomografia por Raio-X/métodos , Animais , Artefatos , Técnicas de Preparação Histocitológica , Ratos Sprague-Dawley
11.
Adv Sci (Weinh) ; 5(6): 1700694, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29938163

RESUMO

There have been great efforts on the nanoscale 3D probing of brain tissues to image subcellular morphologies. However, limitations in terms of tissue coverage, anisotropic resolution, stain dependence, and complex sample preparation all hinder achieving a better understanding of the human brain functioning in the subcellular context. Herein, X-ray nanoholotomography is introduced as an emerging synchrotron radiation-based technology for large-scale, label-free, direct imaging with isotropic voxel sizes down to 25 nm, exhibiting a spatial resolution down to 88 nm. The procedure is nondestructive as it does not require physical slicing. Hence, it allows subsequent imaging by complementary techniques, including histology. The feasibility of this 3D imaging approach is demonstrated on human cerebellum and neocortex specimens derived from paraffin-embedded tissue blocks. The obtained results are compared to hematoxylin and eosin stained histological sections and showcase the ability for rapid hierarchical neuroimaging and automatic rebuilding of the neuronal architecture at the level of a single cell nucleolus. The findings indicate that nanoholotomography can complement microscopy not only by large isotropic volumetric data but also by morphological details on the sub-100 nm level, addressing many of the present challenges in brain tissue characterization and probably becoming an important tool in nanoanatomy.

12.
Sci Rep ; 6: 32156, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581254

RESUMO

Brain tissue evaluation is essential for gaining in-depth insight into its diseases and disorders. Imaging the human brain in three dimensions has always been a challenge on the cell level. In vivo methods lack spatial resolution, and optical microscopy has a limited penetration depth. Herein, we show that hard X-ray phase tomography can visualise a volume of up to 43 mm(3) of human post mortem or biopsy brain samples, by demonstrating the method on the cerebellum. We automatically identified 5,000 Purkinje cells with an error of less than 5% at their layer and determined the local surface density to 165 cells per mm(2) on average. Moreover, we highlight that three-dimensional data allows for the segmentation of sub-cellular structures, including dendritic tree and Purkinje cell nucleoli, without dedicated staining. The method suggests that automatic cell feature quantification of human tissues is feasible in phase tomograms obtained with isotropic resolution in a label-free manner.


Assuntos
Cerebelo/diagnóstico por imagem , Células de Purkinje/citologia , Tomografia Computadorizada por Raios X/métodos , Idoso , Autopsia/métodos , Nucléolo Celular , Cerebelo/citologia , Humanos , Imageamento Tridimensional/métodos , Masculino
13.
Expert Opin Ther Targets ; 19(4): 539-49, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25474489

RESUMO

INTRODUCTION: The focal adhesion kinase (FAK) and the Src families of kinases are subfamilies of the non-receptor protein tyrosine kinases. FAK activity is regulated by gene amplification, alternative splicing and phosporylation/dephosphorylation. FAK/Src complex has been found to participate through various pathways in neuronal models of ischemia-reperfusion injury (IRI) with conflicting results. The aim of the present review is to summarize the currently available data on this subject. AREAS COVERED: The MEDLINE/PubMed database was searched for publications with the medical subject heading IRI and FAK and/or Src, nervous system. We restricted our search till 2014. We identified 93 articles that were available in English as abstracts or/and full-text articles that were deemed appropriate for our review. EXPERT OPINION: FAK has been found to have a beneficial preconditioning effect on IRI through activation via the protein kinase C (PKC) pathway by anesthetic agents. Of great importance are the interactions between FAK/Src and VEGF that has been already detected as a protective mean for IRI. The effect of VEGF administration might depend on dose as well as on time of administration. A Ca(2+)/calmodulin-dependent protein kinase II or PKC inhibitors seem to have protective effects on IRI by inhibiting ion channels activation.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Doenças do Sistema Nervoso/fisiopatologia , Traumatismo por Reperfusão/fisiopatologia , Quinases da Família src/metabolismo , Anestésicos/farmacologia , Animais , Humanos , Precondicionamento Isquêmico , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA