Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 141(5): 884-96, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20493519

RESUMO

Activation of ErbB receptors by epidermal growth factor (EGF) or heregulin (HRG) determines distinct cell-fate decisions, although signals propagate through shared pathways. Using mathematical modeling and experimental approaches, we unravel how HRG and EGF generate distinct, all-or-none responses of the phosphorylated transcription factor c-Fos. In the cytosol, EGF induces transient and HRG induces sustained ERK activation. In the nucleus, however, ERK activity and c-fos mRNA expression are transient for both ligands. Knockdown of dual-specificity phosphatases extends HRG-stimulated nuclear ERK activation, but not c-fos mRNA expression, implying the existence of a HRG-induced repressor of c-fos transcription. Further experiments confirmed that this repressor is mainly induced by HRG, but not EGF, and requires new protein synthesis. We show how a spatially distributed, signaling-transcription cascade robustly discriminates between transient and sustained ERK activities at the c-Fos system level. The proposed control mechanisms are general and operate in different cell types, stimulated by various ligands.


Assuntos
Modelos Biológicos , Proteínas Proto-Oncogênicas c-fos/genética , Linhagem Celular Tumoral , Fosfatases de Especificidade Dupla/metabolismo , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neuregulina-1/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transcrição Gênica
2.
Bioconjug Chem ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889324

RESUMO

Full-spectrum flow cytometry has increased antibody-based multiplexing, yet further increases remain potentially impactful. We recently proposed how fluorescence multiplexing using spectral imaging and combinatorics (MuSIC) could do so using tandem dyes and an oligo-based antibody labeling method. In this work, we found that such labeled antibodies had significantly lower signal intensities than conventionally labeled antibodies in human cell experiments. To improve signal intensity, we tested moving the fluorophores from the original external (ext.) 5' or 3' end-labeled orientation to internal (int.) fluorophore modifications. Cell-free spectrophotometer measurements showed a ∼6-fold signal intensity increase of the new int. configuration compared to the previous ext. configuration. Time-resolved fluorescence and fluorescence correlation spectroscopy showed that the ∼3-fold brightness difference is due to static quenching most likely by the oligo or solution in the ext. configuration. Spectral flow cytometry experiments using peripheral blood mononuclear cells show int. MuSIC probe-labeled antibodies (i) retained increased signal intensity while having no significant difference in the estimated % of CD8+ lymphocytes and (ii) labeled with Atto488, Atto647, and Atto488/647 combinations can be demultiplexed in triple-stained samples. The antibody labeling approach is general and can be broadly applied to many biological and diagnostic applications where spectral detection is available.

3.
PLoS Comput Biol ; 19(5): e1011082, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126527

RESUMO

Cancer chemotherapy combines multiple drugs, but predicting the effects of drug combinations on cancer cell proliferation remains challenging, even for simple in vitro systems. We hypothesized that by combining knowledge of single drug dose responses and cell state transition network dynamics, we could predict how a population of cancer cells will respond to drug combinations. We tested this hypothesis here using three targeted inhibitors of different cell cycle states in two different cell lines in vitro. We formulated a Markov model to capture temporal cell state transitions between different cell cycle phases, with single drug data constraining how drug doses affect transition rates. This model was able to predict the landscape of all three different pairwise drug combinations across all dose ranges for both cell lines with no additional data. While further application to different cell lines, more drugs, additional cell state networks, and more complex co-culture or in vivo systems remain, this work demonstrates how currently available or attainable information could be sufficient for prediction of drug combination response for single cell lines in vitro.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Combinação de Medicamentos , Proliferação de Células , Linhagem Celular Tumoral
4.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941686

RESUMO

Gene expression signatures (GES) connect phenotypes to differential messenger RNA (mRNA) expression of genes, providing a powerful approach to define cellular identity, function, and the effects of perturbations. The use of GES has suffered from vague assessment criteria and limited reproducibility. Because the structure of proteins defines the functional capability of genes, we hypothesized that enrichment of structural features could be a generalizable representation of gene sets. We derive structural gene expression signatures (sGES) using features from multiple levels of protein structure (e.g., domain and fold) encoded by the mRNAs in GES. Comprehensive analyses of data from the Genotype-Tissue Expression Project (GTEx), the all RNA-seq and ChIP-seq sample and signature search (ARCHS4) database, and mRNA expression of drug effects on cardiomyocytes show that sGES are useful for characterizing biological phenomena. sGES enable phenotypic characterization across experimental platforms, facilitates interoperability of expression datasets, and describe drug action on cells.


Assuntos
Conformação Proteica , Proteínas/química , Proteínas/genética , Transcriptoma , Linhagem Celular , Sequenciamento de Cromatina por Imunoprecipitação , Biologia Computacional , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Miócitos Cardíacos , RNA Mensageiro , RNA-Seq , Reprodutibilidade dos Testes
5.
Biomacromolecules ; 23(9): 3743-3751, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35926160

RESUMO

Multiangle light scattering (MALS) was used to determine the absolute molar mass of fluorescent macromolecules. It is standard protocol to install bandwidth filters before MALS detectors to suppress detection of fluorescent emissions. Fluorescence can introduce tremendous error in light scattering measurements and is a formidable challenge in accurately characterizing fluorescent macromolecules and particles. However, we show that for some systems, bandwidth filters alone are insufficient for blocking fluorescence in molar mass determinations. For these systems, we have devised a correction procedure to calculate the amount of fluorescence interference in the filtered signal. By determining the intensity of fluorescent emission not blocked by the bandwidth filters, we can correct the filtered signal accordingly and accurately determine the true molar mass. The transmission rates are calculated before MALS experimentation using emission data from standard fluorimetry techniques, allowing for the characterization of unknown samples. To validate the correction procedure, we synthesized fluorescent dye-conjugated proteins using an IR800CW (LI-COR) fluorophore and Bovine Serum Albumin protein. We successfully eliminated fluorescence interference in MALS measurements using this approach. This correction procedure has potential application toward more accurate molar mass characterizations of macromolecules with intrinsic fluorescence, such as lignins, fluorescent proteins, fluorescence-tagged proteins, and optically active nanoparticles.


Assuntos
Luz , Nanopartículas , Peso Molecular , Espalhamento de Radiação , Soroalbumina Bovina
6.
Bioconjug Chem ; 32(6): 1156-1166, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34009954

RESUMO

Fluorescent antibodies are a workhorse of biomedical science, but fluorescence multiplexing has been notoriously difficult due to spectral overlap between fluorophores. We recently established proof-of-principal for fluorescence Multiplexing using Spectral Imaging and Combinatorics (MuSIC), which uses combinations of existing fluorophores to create unique spectral signatures for increased multiplexing. However, a method for labeling antibodies with MuSIC probes has not yet been developed. Here, we present a method for labeling antibodies with MuSIC probes. We conjugate a DBCO-Peg5-NHS ester linker to antibodies and a single-stranded DNA "docking strand" to the linker and, finally, hybridize two MuSIC-compatible, fluorescently labeled oligos to the docking strand. We validate the labeling protocol with spin-column purification and absorbance measurements. We demonstrate the approach using (i) Cy3, (ii) Tex615, and (iii) a Cy3-Tex615 combination as three different MuSIC probes attached to three separate batches of antibodies. We created single-, double-, and triple-positive beads that are analogous to single cells by incubating MuSIC probe-labeled antibodies with protein A beads. Spectral flow cytometry experiments demonstrate that each MuSIC probe can be uniquely distinguished, and the fraction of beads in a mixture with different staining patterns are accurately inferred. The approach is general and might be more broadly applied to cell-type profiling or tissue heterogeneity studies in clinical, biomedical, and drug discovery research.


Assuntos
Anticorpos/química , Anticorpos/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Espectrometria de Fluorescência
7.
PLoS Comput Biol ; 14(3): e1005985, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29579036

RESUMO

Most cancer cells harbor multiple drivers whose epistasis and interactions with expression context clouds drug and drug combination sensitivity prediction. We constructed a mechanistic computational model that is context-tailored by omics data to capture regulation of stochastic proliferation and death by pan-cancer driver pathways. Simulations and experiments explore how the coordinated dynamics of RAF/MEK/ERK and PI-3K/AKT kinase activities in response to synergistic mitogen or drug combinations control cell fate in a specific cellular context. In this MCF10A cell context, simulations suggest that synergistic ERK and AKT inhibitor-induced death is likely mediated by BIM rather than BAD, which is supported by prior experimental studies. AKT dynamics explain S-phase entry synergy between EGF and insulin, but simulations suggest that stochastic ERK, and not AKT, dynamics seem to drive cell-to-cell proliferation variability, which in simulations is predictable from pre-stimulus fluctuations in C-Raf/B-Raf levels. Simulations suggest MEK alteration negligibly influences transformation, consistent with clinical data. Tailoring the model to an alternate cell expression and mutation context, a glioma cell line, allows prediction of increased sensitivity of cell death to AKT inhibition. Our model mechanistically interprets context-specific landscapes between driver pathways and cell fates, providing a framework for designing more rational cancer combination therapy.


Assuntos
Antineoplásicos/farmacologia , Biologia Computacional/métodos , Mitógenos/farmacologia , Neoplasias , Transdução de Sinais/efeitos dos fármacos , Algoritmos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Processos Estocásticos
8.
Cytometry A ; 91(1): 14-24, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27768827

RESUMO

Mass cytometry offers the advantage of allowing the simultaneous measurement of a greater number parameters than conventional flow cytometry. However, to date, mass cytometry has lacked a reliable alternative to the light scatter properties that are commonly used as a cell size metric in flow cytometry (forward scatter intensity-FSC). Here, we report the development of two plasma membrane staining assays to evaluate mammalian cell size in mass cytometry experiments. One is based on wheat germ agglutinin (WGA) staining and the other on Osmium tetroxide (OsO4 ) staining, both of which have preferential affinity for cell membranes. We first perform imaging and flow cytometry experiments to establish a relationship between WGA staining intensity and traditional measures of cell size. We then incorporate WGA staining in mass cytometry analysis of human whole blood and show that WGA staining intensity has reproducible patterns within and across immune cell subsets that have distinct cell sizes. Lastly, we stain PBMCs or dissociated lung tissue with both WGA and OsO4 ; mass cytometry analysis demonstrates that the two staining intensities correlate well with one another. We conclude that both WGA and OsO4 may be used to acquire cell size-related parameters in mass cytometry experiments, and expect these stains to be broadly useful in expanding the range of parameters that can be measured in mass cytometry experiments. © 2016 International Society for Advancement of Cytometry.


Assuntos
Membrana Celular/ultraestrutura , Tamanho Celular , Citometria de Fluxo/métodos , Animais , Humanos , Tetróxido de Ósmio/química , Aglutininas do Germe de Trigo/química
10.
Res Sq ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826227

RESUMO

Glioblastoma Multiforme (GBM) remains a particularly difficult cancer to treat, and survival outcomes remain poor. In addition to the lack of dedicated drug discovery programs for GBM, extensive intratumor heterogeneity and epigenetic plasticity related to cell-state transitions are major roadblocks to successful drug therapy in GBM. To study these phenomenon, publicly available snRNAseq and bulk RNAseq data from patient samples were used to categorize cells from patients into four cell states (i.e. phenotypes), namely: (i) neural progenitor-like (NPC-like), (ii) oligodendrocyte progenitor-like (OPC-like), (iii) astrocyte- like (AC-like), and (iv) mesenchymal-like (MES-like). Patients were subsequently grouped into subpopulations based on which cell-state was the most dominant in their respective tumor. By incorporating phosphoproteomic measurements from the same patients, a protein-protein interaction network (PPIN) was constructed for each cell state. These four-cell state PPINs were pooled to form a single Boolean network that was used for in silico protein knockout simulations to investigate mechanisms that either promote or prevent cell state transitions. Simulation results were input into a boosted tree machine learning model which predicted the cell states or phenotypes of GBM patients from an independent public data source, the Glioma Longitudinal Analysis (GLASS) Consortium. Combining the simulation results and the machine learning predictions, we generated hypotheses for clinically relevant causal mechanisms of cell state transitions. For example, the transcription factor TFAP2A can be seen to promote a transition from the NPC-like to the MES-like state. Such protein nodes and the associated signaling pathways provide potential drug targets that can be further tested in vitro and support cell state-directed (CSD) therapy.

11.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766170

RESUMO

Glioblastoma Multiforme (GBM) remains a particularly difficult cancer to treat, and survival outcomes remain poor. In addition to the lack of dedicated drug discovery programs for GBM, extensive intratumor heterogeneity and epigenetic plasticity related to cell-state transitions are major roadblocks to successful drug therapy in GBM. To study these phenomenon, publicly available snRNAseq and bulk RNAseq data from patient samples were used to categorize cells from patients into four cell states (i.e. phenotypes), namely: (i) neural progenitor-like (NPC-like), (ii) oligodendrocyte progenitor-like (OPC-like), (iii) astrocyte-like (AC-like), and (iv) mesenchymal-like (MES-like). Patients were subsequently grouped into subpopulations based on which cell-state was the most dominant in their respective tumor. By incorporating phosphoproteomic measurements from the same patients, a protein-protein interaction network (PPIN) was constructed for each cell state. These four-cell state PPINs were pooled to form a single Boolean network that was used for in silico protein knockout simulations to investigate mechanisms that either promote or prevent cell state transitions. Simulation results were input into a boosted tree machine learning model which predicted the cell states or phenotypes of GBM patients from an independent public data source, the Glioma Longitudinal Analysis (GLASS) Consortium. Combining the simulation results and the machine learning predictions, we generated hypotheses for clinically relevant causal mechanisms of cell state transitions. For example, the transcription factor TFAP2A can be seen to promote a transition from the NPC-like to the MES-like state. Such protein nodes and the associated signaling pathways provide potential drug targets that can be further tested in vitro and support cell state-directed (CSD) therapy.

12.
NPJ Syst Biol Appl ; 10(1): 65, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834572

RESUMO

Understanding the dynamics of intracellular signaling pathways, such as ERK1/2 (ERK) and Akt1/2 (Akt), in the context of cell fate decisions is important for advancing our knowledge of cellular processes and diseases, particularly cancer. While previous studies have established associations between ERK and Akt activities and proliferative cell fate, the heterogeneity of single-cell responses adds complexity to this understanding. This study employed a data-driven approach to address this challenge, developing machine learning models trained on a dataset of growth factor-induced ERK and Akt activity time courses in single cells, to predict cell division events. The most predictive models were developed by applying discrete wavelet transforms (DWTs) to extract low-frequency features from the time courses, followed by using Ensemble Integration, a data integration and predictive modeling framework. The results demonstrated that these models effectively predicted cell division events in MCF10A cells (F-measure=0.524, AUC=0.726). ERK dynamics were found to be more predictive than Akt, but the combination of both measurements further enhanced predictive performance. The ERK model`s performance also generalized to predicting division events in RPE cells, indicating the potential applicability of these models and our data-driven methodology for predicting cell division across different biological contexts. Interpretation of these models suggested that ERK dynamics throughout the cell cycle, rather than immediately after growth factor stimulation, were associated with the likelihood of cell division. Overall, this work contributes insights into the predictive power of intra-cellular signaling dynamics for cell fate decisions, and highlights the potential of machine learning approaches in unraveling complex cellular behaviors.


Assuntos
Divisão Celular , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Humanos , Divisão Celular/fisiologia , Aprendizado de Máquina , Transdução de Sinais/fisiologia , Modelos Biológicos , Processos Estocásticos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proliferação de Células/fisiologia
13.
bioRxiv ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38765957

RESUMO

Western blotting is a stalwart technique for analyzing specific proteins and/or their post-translational modifications. However, it remains challenging to accommodate more than ∼10 samples per experiment without substantial departure from trusted, established protocols involving accessible instrumentation. Here, we describe a 96-sample western blot that conforms to standard 96-well plate dimensional constraints and has little operational deviation from standard western blotting. The main differences are that (i) submerged polyacrylamide gel electrophoresis is operated horizontally (similar to agarose gels) as opposed to vertically, and (ii) a 6 mm thick gel is used, with 2 mm most relevant for membrane transfer (vs ∼1 mm typical). Results demonstrate both wet and semi-dry transfer are compatible with this gel thickness. The major tradeoff is reduced molecular weight resolution, due primarily to less available migration distance per sample. We demonstrate proof-of-principle using gels loaded with molecular weight ladder, recombinant protein, and cell lysates. We expect the 96-well western blot will increase reproducibility, efficiency, and capacity for biological characterization relative to established western blots.

14.
J Theor Biol ; 326: 1-10, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23467198

RESUMO

A major feature of an adaptive immune system is its ability to generate B- and T-cell clones capable of recognizing and neutralizing specific antigens. These clones recognize antigens with the help of the surface molecules, called antigen receptors, acquired individually during the clonal development process. In order to ensure a response to a broad range of antigens, the number of different receptor molecules is extremely large, resulting in a huge clonal diversity of both B- and T-cell receptor populations and making their experimental comparisons statistically challenging. To facilitate such comparisons, we propose a flexible parametric model of multivariate count data and illustrate its use in a simultaneous analysis of multiple antigen receptor populations derived from mammalian T-cells. The model relies on a representation of the observed receptor counts as a multivariate Poisson abundance mixture (m PAM). A Bayesian parameter fitting procedure is proposed, based on the complete posterior likelihood, rather than the conditional one used typically in similar settings. The new procedure is shown to be considerably more efficient than its conditional counterpart (as measured by the Fisher information) in the regions of m PAM parameter space relevant to model T-cell data.


Assuntos
Interpretação Estatística de Dados , Modelos Imunológicos , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Teorema de Bayes , Humanos , Ativação Linfocitária , Contagem de Linfócitos/estatística & dados numéricos , Análise Multivariada , Distribuição de Poisson , Linfócitos T/citologia
15.
Ind Eng Chem Res ; 62(5): 2288-2298, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37441358

RESUMO

Two things Tunde loved were dynamics and probability. The work described herein combined them both, which explains why Tunde invariably asked me each time we talked how this work was proceeding. However, as I've come to appreciate as reminiscent of a surprisingly large amount of work in almost any researcher's career, I did not complete a peer-reviewed article on the matter while he could see it. We were broadly motivated by analysis of data for total DNA content in single cells, across thousands of cells. From such data one can estimate the proportions of cells in different phases of the cell cycle by fitting a mixture model for subpopulations of G0/G1 phase cells (1 relative copy of the genome), S phase cells (between 1 and 2 relative copies of the genome), and G2/M phase cells (2 relative copies of the genome). Given an asynchronously cycling population, Gaussian models are reasonable for the G0/G1 and G2/M subpopulations, but an appropriate functional form for the S-phase subpopulation was unclear. Since the probability of observing an S-phase cell is intimately related to the dynamics of DNA replication, we worked to derive a model for DNA replication dynamics from first principles, resulting in a closed-form, analytic expression for the dynamics of DNA synthesis. While quite arguably a somewhat superfluous effort, there is a certain satisfaction and academic beauty to modeling systems from a first-principles approach, and it can sometimes lead to unexpected scientific insights. Yet, while mathematically elegant, there was a fundamental issue with a key assumption that the so-called inter-origin distance distribution (distances between DNA replication initiation sites) was time-invariant. First, I present the model as developed previously. Then, to address the time-invariant inter-origin distance distribution issue, I provide a treatment of time-varying inter-origin distance distributions that, while mathematically simple, provides (i) mechanistic predictions for how all the DNA in a fertilized frog egg can be replicated "on time" despite some inter-origin distances initially exceeding the corresponding amount of allowable time and (ii) evidence that, based only on data from DNA content versus time and average inter-origin distances, somatic cell DNA is parsed into distinct regions whose replication is temporally separate.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38269333

RESUMO

Computational models that can explain and predict complex sub-cellular, cellular, and tissue-level drug response mechanisms could speed drug discovery and prioritize patient-specific treatments (i.e., precision medicine). Some models are mechanistic with detailed equations describing known (or supposed) physicochemical processes, while some are statistical or machine learning-based approaches, that explain datasets but have no mechanistic or causal guarantees. These two types of modeling are rarely combined, missing the opportunity to explore possibly causal but data-driven new knowledge while explaining what is already known. Here, we explore combining machine learned associations with mechanistic models to develop computational models that could more fully represent cellular behavior. In this proposed MEMMAL (MEchanistic Modeling with MAchine Learning) framework, machine learning/statistical models built using omics datasets provide predictions for new interactions between genes and proteins where there is physicochemical uncertainty. These interactions are used as a basis for new reactions in mechanistic models. As a test case, we focused on incorporating novel IFNγ/PD-L1 related associations into a large-scale mechanistic model for cell proliferation and death to better recapitulate the recently released NIH LINCS Consortium MCF10A dataset and enable description of the cellular response to checkpoint inhibitor immunotherapies. This work is a template for combining big-data-inferred interactions with mechanistic models, which could be more broadly applicable for building multi-scale precision medicine and whole cell models.

17.
Nat Commun ; 14(1): 3991, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414767

RESUMO

Robust identification of context-specific network features that control cellular phenotypes remains a challenge. We here introduce MOBILE (Multi-Omics Binary Integration via Lasso Ensembles) to nominate molecular features associated with cellular phenotypes and pathways. First, we use MOBILE to nominate mechanisms of interferon-γ (IFNγ) regulated PD-L1 expression. Our analyses suggest that IFNγ-controlled PD-L1 expression involves BST2, CLIC2, FAM83D, ACSL5, and HIST2H2AA3 genes, which were supported by prior literature. We also compare networks activated by related family members transforming growth factor-beta 1 (TGFß1) and bone morphogenetic protein 2 (BMP2) and find that differences in ligand-induced changes in cell size and clustering properties are related to differences in laminin/collagen pathway activity. Finally, we demonstrate the broad applicability and adaptability of MOBILE by analyzing publicly available molecular datasets to investigate breast cancer subtype specific networks. Given the ever-growing availability of multi-omics datasets, we envision that MOBILE will be broadly useful for identification of context-specific molecular features and pathways.


Assuntos
Antígeno B7-H1 , Interferon gama , Interferon gama/genética
18.
bioRxiv ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37461453

RESUMO

While full-spectrum flow cytometry has increased antibody-based multiplexing, yet further increases remain potentially impactful. We recently proposed how fluorescence Multiplexing using Spectral Imaging and Combinatorics (MuSIC) could do so using tandem dyes and an oligo-based antibody labeling method. In this work, we found that such labeled antibodies had significantly lower signal intensity than conventionally-labeled antibodies in human cell experiments. To improve signal intensity, we tested moving the fluorophores from the original external (ext.) 5' or 3' end-labeled orientation to internal (int.) fluorophore modifications. Cell-free spectrophotometer measurements showed a ~6-fold signal intensity increase of the new int. configuration compared to the previous ext. configuration. Time-resolved fluorescence spectroscopy and fluorescence correlation spectroscopy showed that ~3-fold brightness difference is due to static quenching. Spectral flow cytometry experiments using peripheral blood mononuclear cells stained with anti-CD8 antibodies showed that int. MuSIC probe-labeled antibodies have signal intensity equal to or greater than conventionally-labeled antibodies with similar estimated proportion of CD8+ lymphocytes. The antibody labeling approach is general and can be broadly applied to many biological and diagnostic applications.

19.
Bioinform Adv ; 3(1): vbad039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020976

RESUMO

Summary: Large-scale and whole-cell modeling has multiple challenges, including scalable model building and module communication bottlenecks (e.g. between metabolism, gene expression, signaling, etc.). We previously developed an open-source, scalable format for a large-scale mechanistic model of proliferation and death signaling dynamics, but communication bottlenecks between gene expression and protein biochemistry modules remained. Here, we developed two solutions to communication bottlenecks that speed-up simulation by ∼4-fold for hybrid stochastic-deterministic simulations and by over 100-fold for fully deterministic simulations. Fully deterministic speed-up facilitates model initialization, parameter estimation and sensitivity analysis tasks. Availability and implementation: Source code is freely available at https://github.com/birtwistlelab/SPARCED/releases/tag/v1.3.0 implemented in python, and supported on Linux, Windows and MacOS (via Docker).

20.
ACS Synth Biol ; 12(8): 2290-2300, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463472

RESUMO

Systematic, genome-scale genetic screens have been instrumental for elucidating genotype-phenotype relationships, but approaches for probing genetic interactions have been limited to at most ∼100 pre-selected gene combinations in mammalian cells. Here, we introduce a theory for high-throughput genetic interaction screens. The theory extends our recently developed Multiplexing using Spectral Imaging and Combinatorics (MuSIC) approach to propose ∼105 spectrally unique, genetically encoded MuSIC barcodes from 18 currently available fluorescent proteins. Simulation studies based on constraints imposed by spectral flow cytometry equipment suggest that genetic interaction screens at the human genome-scale may be possible if MuSIC barcodes can be paired to guide RNAs. While experimental testing of this theory awaits, it offers transformative potential for genetic perturbation technology and knowledge of genetic function. More broadly, the availability of a genome-scale spectral barcode library for non-destructive identification of single cells could find more widespread applications such as traditional genetic screening and high-dimensional lineage tracing.


Assuntos
Ensaios de Triagem em Larga Escala , Mamíferos , Animais , Humanos , Clonagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA