Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 85(5): 2630-7, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23356387

RESUMO

The outer membrane of a bacterium is composed of chemical and biological components that carry specific molecular information related to strains, growth stages, expressions to stimulation, and maybe even geographic differences. In this work, we demonstrate that the biochemical information embedded in the outer membrane can be used for rapid detection and identification of pathogenic bacteria using surface-enhanced Raman spectroscopy (SERS). We used seven different strains of the marine pathogen Vibrio parahaemolyticus as a model system. The strains represent four genetically distinct clades isolated from clinical and environmental sources in Washington, U.S.A. The unique quasi-3D (Q3D) plasmonic nanostructure arrays, optimized using finite-difference time-domain (FDTD) calculations, were used as SERS-active substrates for sensitive and reproducible detection of these bacteria. SERS barcodes were generated on the basis of SERS spectra and were used to successfully detect individual strains in both blind samples and mixtures. The sensing and detection methods developed in this work could have broad applications in the areas of environmental monitoring, biomedical diagnostics, and homeland security.


Assuntos
Análise Espectral Raman/métodos , Vibrio parahaemolyticus/isolamento & purificação , Eletricidade , Vidro/química , Ouro/química , Limite de Detecção , Nanoestruturas/química , Análise Espectral Raman/instrumentação , Propriedades de Superfície , Fatores de Tempo , Compostos de Estanho/química
2.
PLoS One ; 8(2): e55726, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409028

RESUMO

Vibrio parahaemolyticus is a common marine bacterium and a leading cause of seafood-borne bacterial gastroenteritis worldwide. Although this bacterium has been the subject of much research, the population structure of cold-water populations remains largely undescribed. We present a broad phylogenetic analysis of clinical and environmental V. parahaemolyticus originating largely from the Pacific Northwest coast of the United States. Repetitive extragenic palindromic PCR (REP-PCR) separated 167 isolates into 39 groups and subsequent multilocus sequence typing (MLST) separated a subset of 77 isolates into 24 sequence types. The Pacific Northwest population exhibited a semi-clonal structure attributed to an environmental clade (ST3, N = 17 isolates) clonally related to the pandemic O3:K6 complex and a clinical clade (ST36, N = 20 isolates) genetically related to a regionally endemic O4:K12 complex. Further, the identification of at least five additional clinical sequence types (i.e., ST43, 50, 65, 135 and 417) demonstrates that V. parahaemolyticus gastroenteritis in the Pacific Northwest is polyphyletic in nature. Recombination was evident as a significant source of genetic diversity and in particular, the recA and dtdS alleles showed strong support for frequent recombination. Although pandemic-related illnesses were not documented during the study, the environmental occurrence of the pandemic clone may present a significant threat to human health and warrants continued monitoring. It is evident that V. parahaemolyticus population structure in the Pacific Northwest is semi-clonal and it would appear that multiple sequence types are contributing to the burden of disease in this region.


Assuntos
Vibrio parahaemolyticus/genética , Gastroenterite/microbiologia , Loci Gênicos , Humanos , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Filogenia , Recombinação Genética , Vibrioses/microbiologia , Vibrio parahaemolyticus/classificação , Vibrio parahaemolyticus/isolamento & purificação , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA