Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(5): e3002110, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155705

RESUMO

Toxoplasma gondii is a widespread apicomplexan parasite that can cause severe disease in its human hosts. The ability of T. gondii and other apicomplexan parasites to invade into, egress from, and move between cells of the hosts they infect is critical to parasite virulence and disease progression. An unusual and highly conserved parasite myosin motor (TgMyoA) plays a central role in T. gondii motility. The goal of this work was to determine whether the parasite's motility and lytic cycle can be disrupted through pharmacological inhibition of TgMyoA, as an approach to altering disease progression in vivo. To this end, we first sought to identify inhibitors of TgMyoA by screening a collection of 50,000 structurally diverse small molecules for inhibitors of the recombinant motor's actin-activated ATPase activity. The top hit to emerge from the screen, KNX-002, inhibited TgMyoA with little to no effect on any of the vertebrate myosins tested. KNX-002 was also active against parasites, inhibiting parasite motility and growth in culture in a dose-dependent manner. We used chemical mutagenesis, selection in KNX-002, and targeted sequencing to identify a mutation in TgMyoA (T130A) that renders the recombinant motor less sensitive to compound. Compared to wild-type parasites, parasites expressing the T130A mutation showed reduced sensitivity to KNX-002 in motility and growth assays, confirming TgMyoA as a biologically relevant target of KNX-002. Finally, we present evidence that KNX-002 can slow disease progression in mice infected with wild-type parasites, but not parasites expressing the resistance-conferring TgMyoA T130A mutation. Taken together, these data demonstrate the specificity of KNX-002 for TgMyoA, both in vitro and in vivo, and validate TgMyoA as a druggable target in infections with T. gondii. Since TgMyoA is essential for virulence, conserved in apicomplexan parasites, and distinctly different from the myosins found in humans, pharmacological inhibition of MyoA offers a promising new approach to treating the devastating diseases caused by T. gondii and other apicomplexan parasites.


Assuntos
Parasitos , Toxoplasma , Humanos , Animais , Camundongos , Toxoplasma/genética , Miosinas , Mutação , Proteínas de Protozoários/genética
2.
Genet Sel Evol ; 54(1): 59, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064318

RESUMO

BACKGROUND: The spread of infectious diseases in populations is controlled by the susceptibility (propensity to acquire infection), infectivity (propensity to transmit infection), and recoverability (propensity to recover/die) of individuals. Estimating genetic risk factors for these three underlying host epidemiological traits can help reduce disease spread through genetic control strategies. Previous studies have identified important 'disease resistance single nucleotide polymorphisms (SNPs)', but how these affect the underlying traits is an unresolved question. Recent advances in computational statistics make it now possible to estimate the effects of SNPs on host traits from epidemic data (e.g. infection and/or recovery times of individuals or diagnostic test results). However, little is known about how to effectively design disease transmission experiments or field studies to maximise the precision with which these effects can be estimated. RESULTS: In this paper, we develop and validate analytical expressions for the precision of the estimates of SNP effects on the three above host traits for a disease transmission experiment with one or more non-interacting contact groups. Maximising these expressions leads to three distinct 'experimental' designs, each specifying a different set of ideal SNP genotype compositions across groups: (a) appropriate for a single contact-group, (b) a multi-group design termed "pure", and (c) a multi-group design termed "mixed", where 'pure' and 'mixed' refer to groupings that consist of individuals with uniformly the same or different SNP genotypes, respectively. Precision estimates for susceptibility and recoverability were found to be less sensitive to the experimental design than estimates for infectivity. Whereas the analytical expressions suggest that the multi-group pure and mixed designs estimate SNP effects with similar precision, the mixed design is preferred because it uses information from naturally-occurring rather than artificial infections. The same design principles apply to estimates of the epidemiological impact of other categorical fixed effects, such as breed, line, family, sex, or vaccination status. Estimation of SNP effect precisions from a given experimental setup is implemented in an online software tool SIRE-PC. CONCLUSIONS: Methodology was developed to aid the design of disease transmission experiments for estimating the effect of individual SNPs and other categorical variables that underlie host susceptibility, infectivity and recoverability. Designs that maximize the precision of estimates were derived.


Assuntos
Modelos Genéticos , Projetos de Pesquisa , Cruzamento , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único
3.
PLoS Genet ; 15(1): e1007759, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30699111

RESUMO

Balancing selection provides a plausible explanation for the maintenance of deleterious alleles at moderate frequency in livestock, including lethal recessives exhibiting heterozygous advantage in carriers. In the current study, a leg weakness syndrome causing mortality of piglets in a commercial line showed monogenic recessive inheritance, and a region on chromosome 15 associated with the syndrome was identified by homozygosity mapping. Whole genome resequencing of cases and controls identified a mutation causing a premature stop codon within exon 3 of the porcine Myostatin (MSTN) gene, similar to those causing a double-muscling phenotype observed in several mammalian species. The MSTN mutation was in Hardy-Weinberg equilibrium in the population at birth, but significantly distorted amongst animals still in the herd at 110 kg, due to an absence of homozygous mutant genotypes. In heterozygous form, the MSTN mutation was associated with a major increase in muscle depth and decrease in fat depth, suggesting that the deleterious allele was maintained at moderate frequency due to heterozygous advantage (allele frequency, q = 0.22). Knockout of the porcine MSTN by gene editing has previously been linked to problems of low piglet survival and lameness. This MSTN mutation is an example of putative balancing selection in livestock, providing a plausible explanation for the lack of disrupting MSTN mutations in pigs despite many generations of selection for lean growth.


Assuntos
Músculo Esquelético/fisiopatologia , Miostatina/genética , Seleção Genética , Doenças dos Suínos/genética , Alelos , Animais , Códon sem Sentido/genética , Pé/fisiopatologia , Heterozigoto , Homozigoto , Mutação , Fenótipo , Sus scrofa/genética , Suínos , Doenças dos Suínos/fisiopatologia
4.
Genomics ; 113(6): 3842-3850, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547402

RESUMO

Genetic resistance to infectious pancreatic necrosis virus (IPNV) in Atlantic salmon is a rare example of a trait where a single locus (QTL) explains almost all of the genetic variation. Genetic marker tests based on this QTL on salmon chromosome 26 have been widely applied in selective breeding to markedly reduce the incidence of the disease. In the current study, whole genome sequencing and functional annotation approaches were applied to characterise genes and variants in the QTL region. This was complemented by an analysis of differential expression between salmon fry of homozygous resistant and homozygous susceptible genotypes challenged with IPNV. These analyses pointed to the NEDD-8 activating enzyme 1 (nae1) gene as a putative functional candidate underlying the QTL effect. The role of nae1 in IPN resistance was further assessed via CRISPR-Cas9 knockout of the nae1 gene and chemical inhibition of the nae1 protein activity in Atlantic salmon cell lines, both of which resulted in highly significant reduction in productive IPNV replication. In contrast, CRISPR-Cas9 knockout of a candidate gene previously purported to be a cellular receptor for the virus (cdh1) did not have a major impact on productive IPNV replication. These results suggest that nae1 is the causative gene underlying the major QTL affecting resistance to IPNV in salmon, provide further evidence for the critical role of neddylation in host-pathogen interactions, and highlight the value in combining high-throughput genomics approaches with targeted genome editing to understand the genetic basis of disease resistance.


Assuntos
Doenças dos Peixes , Vírus da Necrose Pancreática Infecciosa , Salmo salar , Animais , Doenças dos Peixes/genética , Marcadores Genéticos , Locos de Características Quantitativas , Salmo salar/genética
5.
PLoS Comput Biol ; 16(12): e1008447, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33347459

RESUMO

Individuals differ widely in their contribution to the spread of infection within and across populations. Three key epidemiological host traits affect infectious disease spread: susceptibility (propensity to acquire infection), infectivity (propensity to transmit infection to others) and recoverability (propensity to recover quickly). Interventions aiming to reduce disease spread may target improvement in any one of these traits, but the necessary statistical methods for obtaining risk estimates are lacking. In this paper we introduce a novel software tool called SIRE (standing for "Susceptibility, Infectivity and Recoverability Estimation"), which allows for the first time simultaneous estimation of the genetic effect of a single nucleotide polymorphism (SNP), as well as non-genetic influences on these three unobservable host traits. SIRE implements a flexible Bayesian algorithm which accommodates a wide range of disease surveillance data comprising any combination of recorded individual infection and/or recovery times, or disease diagnostic test results. Different genetic and non-genetic regulations and data scenarios (representing realistic recording schemes) were simulated to validate SIRE and to assess their impact on the precision, accuracy and bias of parameter estimates. This analysis revealed that with few exceptions, SIRE provides unbiased, accurate parameter estimates associated with all three host traits. For most scenarios, SNP effects associated with recoverability can be estimated with highest precision, followed by susceptibility. For infectivity, many epidemics with few individuals give substantially more statistical power to identify SNP effects than the reverse. Importantly, precise estimates of SNP and other effects could be obtained even in the case of incomplete, censored and relatively infrequent measurements of individuals' infection or survival status, albeit requiring more individuals to yield equivalent precision. SIRE represents a new tool for analysing a wide range of experimental and field disease data with the aim of discovering and validating SNPs and other factors controlling infectious disease transmission.


Assuntos
Doenças Transmissíveis/genética , Doenças Transmissíveis/transmissão , Epidemias , Algoritmos , Teorema de Bayes , Doenças Transmissíveis/epidemiologia , Humanos , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único
6.
Pharm Res ; 36(4): 51, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771015

RESUMO

PURPOSE: Anti-drug antibodies can impair the efficacy of therapeutic proteins and, in some circumstances, induce adverse health effects. Immunogenicity can be promoted by aggregation; here we examined the ability of recombinant mouse heat shock protein 70 (rmHSP70) - a common host cell impurity - to modulate the immune responses to aggregates of two therapeutic mAbs in mice. METHODS: Heat and shaking stress methods were used to generate aggregates in the sub-micron size range from two human mAbs, and immunogenicity assessed by intraperitoneal exposure in BALB/c mice. RESULTS: rmHSP70 was shown to bind preferentially to aggregates of both mAbs, but not to the native, monomeric proteins. Aggregates supplemented with 0.1% rmHSP70 induced significantly enhanced IgG2a antibody responses compared with aggregates alone but the effect was not observed for monomeric mAbs. Dendritic cells pulsed with mAb aggregate showed enhanced IFNγ production on co-culture with T cells in the presence of rmHSP70. CONCLUSION: The results indicate a Th1-skewing of the immune response by aggregates and show that murine rmHSP70 selectively modulates the immune response to mAb aggregates, but not monomer. These data suggest that heat shock protein impurities can selectively accumulate by binding to mAb aggregates and thus influence immunogenic responses to therapeutic proteins.


Assuntos
Anticorpos Monoclonais/imunologia , Proteínas de Choque Térmico HSP70/farmacologia , Animais , Anticorpos Monoclonais/metabolismo , Formação de Anticorpos , Feminino , Proteínas de Choque Térmico HSP70/imunologia , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico/imunologia , Fenômenos Imunogenéticos , Camundongos , Camundongos Endogâmicos BALB C , Agregados Proteicos , Ligação Proteica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Estresse Mecânico
7.
Genet Sel Evol ; 50(1): 63, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463512

RESUMO

BACKGROUND: Coccidiosis is a major contributor to losses in poultry production. With emerging constraints on the use of in-feed prophylactic anticoccidial drugs and the relatively high costs of effective vaccines, there are commercial incentives to breed chickens with greater resistance to this important production disease. To identify phenotypic biomarkers that are associated with the production impacts of coccidiosis, and to assess their covariance and heritability, 942 Cobb500 commercial broilers were subjected to a defined challenge with Eimeria tenella (Houghton). Three traits were measured: weight gain (WG) during the period of infection, caecal lesion score (CLS) post mortem, and the level of a serum biomarker of intestinal inflammation, i.e. circulating interleukin 10 (IL-10), measured at the height of the infection. RESULTS: Phenotypic analysis of the challenged chicken cohort revealed a significant positive correlation between CLS and IL-10, with significant negative correlations of both these traits with WG. Eigenanalysis of phenotypic covariances between measured traits revealed three distinct eigenvectors. Trait weightings of the first eigenvector, (EV1, eigenvalue = 59%), were biologically interpreted as representing a response of birds that were susceptible to infection, with low WG, high CLS and high IL-10. Similarly, the second eigenvector represented infection resilience/resistance (EV2, 22%; high WG, low CLS and high IL-10), and the third eigenvector tolerance (EV3, 19%; high WG, high CLS and low IL-10), respectively. Genome-wide association studies (GWAS) identified two SNPs that were associated with WG at the suggestive level. CONCLUSIONS: Eigenanalysis separated the phenotypic impact of a defined challenge with E. tenella on WG, caecal inflammation/pathology, and production of IL-10 into three major eigenvectors, indicating that the susceptibility-resistance axis is not a single continuous quantitative trait. The SNPs identified by the GWAS for body weight were located in close proximity to two genes that are involved in innate immunity (FAM96B and RRAD).


Assuntos
Galinhas/genética , Coccidiose/veterinária , Eimeria tenella/patogenicidade , Interleucina-10/sangue , Animais , Peso Corporal/genética , Ceco/patologia , Coccidiose/genética , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Interleucina-10/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Doenças das Aves Domésticas/genética , Aumento de Peso/genética
8.
BMC Genet ; 18(1): 27, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28335717

RESUMO

BACKGROUND: The significant social and economic loss as a result of bovine tuberculosis (bTB) presents a continuous challenge to cattle industries in the UK and worldwide. However, host genetic variation in cattle susceptibility to bTB provides an opportunity to select for resistant animals and further understand the genetic mechanisms underlying disease dynamics. METHODS: The present study identified genomic regions associated with susceptibility to bTB using genome-wide association (GWA), regional heritability mapping (RHM) and chromosome association approaches. Phenotypes comprised de-regressed estimated breeding values of 804 Holstein-Friesian sires and pertained to three bTB indicator traits: i) positive reactors to the skin test with positive post-mortem examination results (phenotype 1); ii) positive reactors to the skin test regardless of post-mortem examination results (phenotype 2) and iii) as in (ii) plus non-reactors and inconclusive reactors to the skin tests with positive post-mortem examination results (phenotype 3). Genotypes based on the 50 K SNP DNA array were available and a total of 34,874 SNPs remained per animal after quality control. RESULTS: The estimated polygenic heritability for susceptibility to bTB was 0.26, 0.37 and 0.34 for phenotypes 1, 2 and 3, respectively. GWA analysis identified a putative SNP on Bos taurus autosomes (BTA) 2 associated with phenotype 1, and another on BTA 23 associated with phenotype 2. Genomic regions encompassing these SNPs were found to harbour potentially relevant annotated genes. RHM confirmed the effect of these genomic regions and identified new regions on BTA 18 for phenotype 1 and BTA 3 for phenotypes 2 and 3. Heritabilities of the genomic regions ranged between 0.05 and 0.08 across the three phenotypes. Chromosome association analysis indicated a major role of BTA 23 on susceptibility to bTB. CONCLUSION: Genomic regions and candidate genes identified in the present study provide an opportunity to further understand pathways critical to cattle susceptibility to bTB and enhance genetic improvement programmes aiming at controlling and eradicating the disease.


Assuntos
Predisposição Genética para Doença/genética , Genômica , Tuberculose Bovina/genética , Animais , Bovinos , Mapeamento Cromossômico , Cromossomos de Mamíferos/genética , Estudo de Associação Genômica Ampla
9.
J Appl Biomech ; 33(4): 311-315, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28121227

RESUMO

The purpose of this study was to examine the reliability of a new upper body medicine ball push-press (MBP-P) test. Twenty-three strength trained volunteers performed a series of supine MBP-P throws using loads representing 5% and10% of their 5RM bench press (5 repetitions at each load). Throws were performed on a force platform (2000 Hz), with medicine ball kinematic data collected using a high-speed motion capture (500 Hz). Testing was repeated after 7-10 days to quantify intertest reliability. Maximal force (Fmax), impulse at Fmax, time to Fmax, and maximum rate of force development (RFDmax) were all calculated from the force platform outputs, with maximum ball velocity (Velmax) and maximum ball acceleration (Accelmax) developed from the kinematic data. Reliability was assessed using intraclass correlation (ICC), coefficient of variation (%CV), and typical error. Medicine ball kinematic variables were more reliable (CV% = 2.6-5.3, ICC = 0.87-0.95) than the various force platform derived power variables (CV% = 7.9-26.7, ICC = 0.51-0.90). The MBP-P test produces reliable data and can be used to quantify many standard power based measures, with the key findings have implications for athletic populations requiring high velocity, light load upper body pushing power.


Assuntos
Fenômenos Biomecânicos/fisiologia , Teste de Esforço/métodos , Força Muscular/fisiologia , Equipamentos Esportivos , Extremidade Superior/fisiologia , Adulto , Humanos , Reprodutibilidade dos Testes
10.
BMC Genomics ; 17: 279, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27066778

RESUMO

BACKGROUND: Infectious Pancreatic Necrosis (IPN) is a highly contagious birnavirus disease of farmed salmonid fish, which often causes high levels of morbidity and mortality. A large host genetic component to resistance has been previously described for Atlantic salmon (Salmo salar L.), which mediates high mortality rates in some families and zero mortality in others. However, the molecular and immunological basis for this resistance is not yet fully known. This manuscript describes a global comparison of the gene expression profiles of resistant and susceptible Atlantic salmon fry following challenge with the IPN virus. RESULTS: Salmon fry from two IPNV-resistant and two IPNV-susceptible full sibling families were challenged with the virus and sampled at 1 day, 7 days and 20 days post-challenge. Significant viral titre was observed in both resistant and susceptible fish at all timepoints, although generally at higher levels in susceptible fish. Gene expression profiles combined with gene ontology and pathway analyses demonstrated that while a clear immune response was observed in both resistant and susceptible fish, there were striking differences between the two phenotypes. The susceptible fish showed marked up-regulation of genes related to cytokine activity and inflammatory response that evidently failed to protect against the virus. In contrast, the resistant fish demonstrated a less pronounced immune response including up-regulation of genes relating to the M2 macrophage system. CONCLUSIONS: While only the susceptible phenotype shows appreciable mortality levels, both resistant and susceptible fish can become infected with IPNV. Susceptible fish are characterized by a much larger, yet ineffective, immune response, largely related to cytokine and inflammatory systems. Resistant fish demonstrate a more moderate, putative macrophage-mediated inflammatory response, which may contribute to their survival.


Assuntos
Infecções por Birnaviridae/veterinária , Resistência à Doença/genética , Doenças dos Peixes/genética , Salmo salar/genética , Salmo salar/imunologia , Animais , Infecções por Birnaviridae/genética , Infecções por Birnaviridae/imunologia , Citocinas/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Vírus da Necrose Pancreática Infecciosa , Macrófagos/imunologia , Salmo salar/virologia , Transcriptoma
11.
Genet Sel Evol ; 48(1): 90, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27884111

RESUMO

BACKGROUND: Bovine tuberculosis (bTB) is a disease of significant economic importance and is a persistent animal health problem with implications for public health worldwide. Control of bTB in the UK has relied on diagnosis through the single intradermal comparative cervical test (SICCT). However, limitations in the sensitivity of this test hinder successful eradication and the control of bTB remains a major challenge. Genetic selection for cattle that are more resistant to bTB infection can assist in bTB control. The aim of this study was to conduct a quantitative genetic analysis of SICCT measurements collected during bTB herd testing. Genetic selection for bTB resistance will be partially informed by SICCT-based diagnosis; therefore it is important to know whether, in addition to increasing bTB resistance, this might also alter genetically the epidemiological characteristics of SICCT. RESULTS: Our main findings are that: (1) the SICCT test is robust at the genetic level, since its hierarchy and comparative nature provide substantial protection against random genetic changes that arise from genetic drift and from correlated responses among its components due to either natural or artificial selection; (2) the comparative nature of SICCT provides effective control for initial skin thickness and age-dependent differences; and (3) continuous variation in SICCT is only lowly heritable and has a weak correlation with SICCT positivity among healthy animals which was not significantly different from zero (P > 0.05). These emerging results demonstrate that genetic selection for bTB resistance is unlikely to change the probability of correctly identifying non-infected animals, i.e. the test's specificity, while reducing the overall number of cases. CONCLUSIONS: This study cannot exclude all theoretical risks from selection on resistance to bTB infection but the role of SICCT in disease control is unlikely to be rapidly undermined, with any adverse correlated responses expected to be weak and slow, which allow them to be monitored and managed.


Assuntos
Cruzamento/estatística & dados numéricos , Resistência à Doença/genética , Padrões de Herança , Teste Tuberculínico/estatística & dados numéricos , Tuberculose Bovina/diagnóstico , Tuberculose Bovina/genética , Fatores Etários , Animais , Bovinos , Feminino , Testes Genéticos , Masculino , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium bovis/isolamento & purificação , Dobras Cutâneas , Tuberculose Bovina/microbiologia
12.
Genet Sel Evol ; 48(1): 51, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27417876

RESUMO

BACKGROUND: Our recent research showed that antibody response to porcine reproductive and respiratory syndrome (PRRS), measured as sample-to-positive (S/P) ratio, is highly heritable and has a high genetic correlation with reproductive performance during a PRRS outbreak. Two major quantitative trait loci (QTL) on Sus scrofa chromosome 7 (SSC7; QTLMHC and QTL130) accounted for ~40 % of the genetic variance for S/P. Objectives of this study were to estimate genetic parameters for PRRS S/P in gilts during acclimation, identify regions associated with S/P, and evaluate the accuracy of genomic prediction of S/P across populations with different prevalences of PRRS and using different single nucleotide polymorphism (SNP) sets. METHODS: Phenotypes and high-density SNP genotypes of female pigs from two datasets were used. The outbreak dataset included 607 animals from one multiplier herd, whereas the gilt acclimation (GA) dataset included data on 2364 replacement gilts from seven breeding companies placed on health-challenged farms. Genomic prediction was evaluated using GA for training and validation, and using GA for training and outbreak for validation. Predictions were based on SNPs across the genome (SNPAll), SNPs in one (SNPMHC and SNP130) or both (SNPSSC7) QTL, or SNPs outside the QTL (SNPRest). RESULTS: Heritability of S/P in the GA dataset increased with the proportion of PRRS-positive animals in the herd (from 0.28 to 0.47). Genomic prediction accuracies ranged from low to moderate. Average accuracies were highest when using only the 269 SNPs in both QTL regions (SNPSSC7, with accuracies of 0.39 and 0.31 for outbreak and GA validation datasets, respectively. Average accuracies for SNPALL, SNPMHC, SNP130, and SNPRest were, respectively, 0.26, 0.39, 0.21, and 0.05 for the outbreak, and 0.28, 0.25, 0.22, and 0.12, for the GA validation datasets. CONCLUSIONS: Moderate genomic prediction accuracies can be obtained for PRRS antibody response using SNPs located within two major QTL on SSC7, while the rest of the genome showed limited predictive ability. Results were obtained using data from multiple genetic sources and farms, which further strengthens these findings. Further research is needed to validate the use of S/P ratio as an indicator trait for reproductive performance during PRRS outbreaks.


Assuntos
Formação de Anticorpos/genética , Genômica/métodos , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/imunologia , Sus scrofa/genética , Animais , Anticorpos Antivirais/sangue , Cruzamento , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sus scrofa/virologia , Suínos
13.
Genet Sel Evol ; 48: 11, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26856324

RESUMO

BACKGROUND: Improving meat quality including taste and tenderness is critical to the protection and development of markets for sheep meat. Phenotypic selection for such measures of meat quality is constrained by the fact that these parameters can only be measured post-slaughter. Carcass composition has an impact on meat quality and can be measured on live animals using advanced imaging technologies such as X-ray computed tomography (CT). Since carcass composition traits are heritable, they are potentially amenable to improvement through marker-assisted and genomic selection. We conducted a genome-wide association study (GWAS) on about 600 Scottish Blackface lambs for which detailed carcass composition phenotypes, including bone, fat and muscle components, had been captured using CT and which were genotyped for ~40,000 single nucleotide polymorphisms (SNPs) using the Illumina OvineSNP50 chip. RESULTS: We confirmed that the carcass composition traits were heritable with moderate to high (0.19-0.78) heritabilities. The GWAS analyses revealed multiple SNPs and quantitative trait loci (QTL) that were associated with effects on carcass composition traits and were significant at the genome-wide level. In particular, we identified a region on ovine chromosome 6 (OAR6) associated with bone weight and bone area that harboured SNPs with p values of 5.55 × 10(-8) and 2.63 × 10(-9), respectively. The same region had effects on fat area, fat density, fat weight and muscle density. We identified plausible positional candidate genes for these OAR6 QTL. We also detected a SNP that reached the genome-wide significance threshold with a p value of 7.28 × 10(-7) and was associated with muscle density on OAR1. Using a regional heritability mapping approach, we also detected regions on OAR3 and 24 that reached genome-wide significance for bone density. CONCLUSIONS: We identified QTL on OAR1, 3, 24 and particularly on OAR6 that are associated with effects on muscle, fat and bone traits. Based on available evidence that indicates that these traits are genetically correlated with meat quality traits, these associated SNPs have potential applications in selective breeding for improved meat quality. Further research is required to determine whether the effects associated with the OAR6 QTL are caused by a single gene or several closely-linked genes.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Carne Vermelha , Carneiro Doméstico/genética , Animais , Composição Corporal/genética , Peso Corporal/genética , Mapeamento Cromossômico , Feminino , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética , Tomografia
14.
BMC Genet ; 16: 51, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25985885

RESUMO

BACKGROUND: Performance and quality traits such as harvest weight, fillet weight and flesh color are of economic importance to the Atlantic salmon aquaculture industry. The genetic factors underlying these traits are of scientific and commercial interest. However, such traits are typically polygenic in nature, with the number and size of QTL likely to vary between studies and populations. The aim of this study was to investigate the genetic basis of several growth and fillet traits measured at harvest in a large farmed salmon population by using SNP markers. Due to the marked heterochiasmy in salmonids, an efficient two-stage mapping approach was applied whereby QTL were detected using a sire-based linkage analysis, a sparse SNP marker map and exploiting low rates of recombination, while a subsequent dam-based analysis focused on the significant chromosomes with a denser map to confirm QTL and estimate their position. RESULTS: The harvest traits all showed significant heritability, ranging from 0.05 for fillet yield up to 0.53 for the weight traits. In the sire-based analysis, 1695 offspring with trait records and their 20 sires were successfully genotyped for the SNPs on the sparse map. Chromosomes 13, 18, 19 and 20 were shown to harbor genome-wide significant QTL affecting several growth-related traits. The QTL on chr. 13, 18 and 20 were detected in the dam-based analysis using 512 offspring from 10 dams and explained approximately 6-7 % of the within-family variation in these traits. CONCLUSIONS: We have detected several QTL affecting economically important complex traits in a commercial salmon population. Overall, the results suggest that the traits are relatively polygenic and that QTL tend to be pleiotropic (affecting the weight of several components of the harvested fish). Comparison of QTL regions across studies suggests that harvest trait QTL tend to be relatively population-specific. Therefore, the application of marker or genomic selection for improvement in these traits is likely to be most effective when the discovery population is closely related to the selection candidates (e.g. within-family genomic selection).


Assuntos
Estudos de Associação Genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Animais , Mapeamento Cromossômico , Ligação Genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Salmo salar/genética
15.
BMC Genomics ; 15: 166, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24571138

RESUMO

BACKGROUND: Genetic linkage maps are useful tools for mapping quantitative trait loci (QTL) influencing variation in traits of interest in a population. Genotyping-by-sequencing approaches such as Restriction-site Associated DNA sequencing (RAD-Seq) now enable the rapid discovery and genotyping of genome-wide SNP markers suitable for the development of dense SNP linkage maps, including in non-model organisms such as Atlantic salmon (Salmo salar). This paper describes the development and characterisation of a high density SNP linkage map based on SbfI RAD-Seq SNP markers from two Atlantic salmon reference families. RESULTS: Approximately 6,000 SNPs were assigned to 29 linkage groups, utilising markers from known genomic locations as anchors. Linkage maps were then constructed for the four mapping parents separately. Overall map lengths were comparable between male and female parents, but the distribution of the SNPs showed sex-specific patterns with a greater degree of clustering of sire-segregating SNPs to single chromosome regions. The maps were integrated with the Atlantic salmon draft reference genome contigs, allowing the unique assignment of ~4,000 contigs to a linkage group. 112 genome contigs mapped to two or more linkage groups, highlighting regions of putative homeology within the salmon genome. A comparative genomics analysis with the stickleback reference genome identified putative genes closely linked to approximately half of the ordered SNPs and demonstrated blocks of orthology between the Atlantic salmon and stickleback genomes. A subset of 47 RAD-Seq SNPs were successfully validated using a high-throughput genotyping assay, with a correspondence of 97% between the two assays. CONCLUSIONS: This Atlantic salmon RAD-Seq linkage map is a resource for salmonid genomics research as genotyping-by-sequencing becomes increasingly common. This is aided by the integration of the SbfI RAD-Seq SNPs with existing reference maps and the draft reference genome, as well as the identification of putative genes proximal to the SNPs. Differences in the distribution of recombination events between the sexes is evident, and regions of homeology have been identified which are reflective of the recent salmonid whole genome duplication.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Salmo salar/genética , Análise de Sequência de DNA , Animais , Feminino , Duplicação Gênica , Marcadores Genéticos , Genoma , Genômica , Genótipo , Masculino , Repetições de Microssatélites , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Recombinação Genética , Reprodutibilidade dos Testes , Sintenia
16.
BMC Genomics ; 15: 90, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24524230

RESUMO

BACKGROUND: Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. RESULTS: SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. CONCLUSIONS: This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in salmonids and in aquaculture breeding programs via genomic selection.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Salmo salar/genética , Alelos , Animais , Análise por Conglomerados , Mapeamento de Sequências Contíguas , Frequência do Gene , Biblioteca Gênica , Ligação Genética , Genótipo , Haploidia , Sequenciamento de Nucleotídeos em Larga Escala , Masculino
17.
Genet Sel Evol ; 46: 9, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24495673

RESUMO

BACKGROUND: Despite the dramatic reduction in the cost of high-density genotyping that has occurred over the last decade, it remains one of the limiting factors for obtaining the large datasets required for genomic studies of disease in the horse. In this study, we investigated the potential for low-density genotyping and subsequent imputation to address this problem. RESULTS: Using the haplotype phasing and imputation program, BEAGLE, it is possible to impute genotypes from low- to high-density (50K) in the Thoroughbred horse with reasonable to high accuracy. Analysis of the sources of variation in imputation accuracy revealed dependence both on the minor allele frequency of the single nucleotide polymorphisms (SNPs) being imputed and on the underlying linkage disequilibrium structure. Whereas equidistant spacing of the SNPs on the low-density panel worked well, optimising SNP selection to increase their minor allele frequency was advantageous, even when the panel was subsequently used in a population of different geographical origin. Replacing base pair position with linkage disequilibrium map distance reduced the variation in imputation accuracy across SNPs. Whereas a 1K SNP panel was generally sufficient to ensure that more than 80% of genotypes were correctly imputed, other studies suggest that a 2K to 3K panel is more efficient to minimize the subsequent loss of accuracy in genomic prediction analyses. The relationship between accuracy and genotyping costs for the different low-density panels, suggests that a 2K SNP panel would represent good value for money. CONCLUSIONS: Low-density genotyping with a 2K SNP panel followed by imputation provides a compromise between cost and accuracy that could promote more widespread genotyping, and hence the use of genomic information in horses. In addition to offering a low cost alternative to high-density genotyping, imputation provides a means to combine datasets from different genotyping platforms, which is becoming necessary since researchers are starting to use the recently developed equine 70K SNP chip. However, more work is needed to evaluate the impact of between-breed differences on imputation accuracy.


Assuntos
Técnicas de Genotipagem/métodos , Cavalos/genética , Animais , Feminino , Frequência do Gene , Genoma , Genótipo , Técnicas de Genotipagem/economia , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável
18.
BMC Genet ; 14: 112, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24283985

RESUMO

BACKGROUND: Myostatin (MSTN) belongs to the transforming growth factor-ß superfamily and is a potent negative regulator of skeletal muscle development and growth in mammals. Most teleost fish possess two MSTN paralogues. However, as a consequence of a recent whole genome-duplication event, salmonids have four: MSTN-1 (-1a and -1b) and MSTN-2 (-2a and -2b). Evidence suggests that teleost MSTN plays a role in the regulation of muscle growth. In the current study, the MSTN-1b gene was re-sequenced and screened for SNP markers in a commercial population of Atlantic salmon. After genotyping 4,800 progeny for the discovered SNPs, we investigated their association with eight harvest traits - four body-weight traits, two ratios of weight traits, flesh colour and fat percentage - using a mixed model association analysis. RESULTS: Three novel SNPs were discovered in the MSTN-1b gene of Atlantic salmon. One of the SNPs, located within the 5' flanking region (g.1086C > T), had a significant association with harvest traits (p < 0.05), specifically for: Harvest Weight (kg), Gutted Weight (kg), Deheaded Weight (kg) and Fillet Weight (kg). The haplotype-based association analysis was consistent with this result because the two haplotypes that showed a significant association with body-weight traits, hap4 and hap5 (p < 0.05 and p < 0.01, respectively), differ by a single substitution at the g.1086C > T locus. The alleles at g.1086C > T act in an additive manner and explain a small percentage of the genetic variation of these phenotypes. CONCLUSIONS: The association analysis revealed that g.1086C > T had a significant association with all body-weight traits under study. Although the SNP explains a small percentage of the variance, our results indicate that a variation in the 5' flanking region of the myostatin gene is associated with the genetic regulation of growth in Atlantic salmon.


Assuntos
Região 5'-Flanqueadora/genética , Miostatina/genética , Polimorfismo de Nucleotídeo Único/genética , Salmo salar/genética , Alelos , Animais , Peso Corporal/genética , Genótipo , Haplótipos , Fenótipo
19.
Genet Sel Evol ; 45: 14, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23714384

RESUMO

BACKGROUND: Breeding livestock for improved resistance to disease is an increasingly important selection goal. However, the risk of pathogens adapting to livestock bred for improved disease resistance is difficult to quantify. Here, we explore the possibility of gastrointestinal worms adapting to sheep bred for low faecal worm egg count using computer simulation. Our model assumes sheep and worm genotypes interact at a single locus, such that the effect of an A allele in sheep is dependent on worm genotype, and the B allele in worms is favourable for parasitizing the A allele sheep but may increase mortality on pasture. We describe the requirements for adaptation and test if worm adaptation (1) is slowed by non-genetic features of worm infections and (2) can occur with little observable change in faecal worm egg count. RESULTS: Adaptation in worms was found to be primarily influenced by overall worm fitness, viz. the balance between the advantage of the B allele during the parasitic stage in sheep and its disadvantage on pasture. Genetic variation at the interacting locus in worms could be from de novo or segregating mutations, but de novo mutations are rare and segregating mutations are likely constrained to have (near) neutral effects on worm fitness. Most other aspects of the worm infection we modelled did not affect the outcomes. However, the host-controlled mechanism to reduce faecal worm egg count by lowering worm fecundity reduced the selection pressure on worms to adapt compared to other mechanisms, such as increasing worm mortality. Temporal changes in worm egg count were unreliable for detecting adaptation, despite the steady environment assumed in the simulations. CONCLUSIONS: Adaptation of worms to sheep selected for low faecal worm egg count requires an allele segregating in worms that is favourable in animals with improved resistance but less favourable in other animals. Obtaining alleles with this specific property seems unlikely. With support from experimental data, we conclude that selection for low faecal worm egg count should be stable over a short time frame (e.g. 20 years). We are further exploring model outcomes with multiple loci and comparing outcomes to other control strategies.


Assuntos
Adaptação Biológica/fisiologia , Enteropatias Parasitárias/veterinária , Nematoides/fisiologia , Doenças dos Ovinos/genética , Doenças dos Ovinos/parasitologia , Algoritmos , Alelos , Animais , Evolução Biológica , Simulação por Computador , Feminino , Frequência do Gene , Aptidão Genética , Loci Gênicos , Variação Genética , Genótipo , Interações Hospedeiro-Patógeno/genética , Masculino , Modelos Biológicos , Contagem de Ovos de Parasitas , Ovinos
20.
Parasitology ; 140(6): 780-91, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23369535

RESUMO

Refugia-based treatment strategies aim to prolong anthelmintic efficacy by maintaining a parasite population unexposed to anthelmintics. Targeted selective treatment (TST) achieves this by treating only animals that will benefit most from treatment, using a determinant criterion (DC). We developed a mathematical model to compare various traits proposed as DC, and investigate impacts of TST and drenching frequency on sheep performance and anthelmintic resistance. Short term, decreasing the proportion of animals drenched reduced benefits of anthelmintic treatment, assessed by empty body weight (EBW), but decreased the rate of anthelmintic resistance development; each consecutive drenching had a reduced impact on average EBW and an increased impact on the rate of anthelmintic resistance emergences. The optimal DC was fecal egg count, maintaining the highest average EBW when reducing the proportion of animals drenched. Long-term, reducing the proportion of animals drenched had little impact on total weight gain benefits, across animals and years, whilst reducing drenching frequency increased it. Decreasing the frequency and proportion of animals drenched were both predicted to increase the duration of anthelmintic efficacy but reduce the total number of drenches administered before resistance was observed. TST and frequency of drenching may lead to different benefits in the short versus long term.


Assuntos
Anti-Helmínticos/farmacologia , Resistência a Medicamentos , Modelos Biológicos , Doenças dos Ovinos/epidemiologia , Trichostrongyloidea/efeitos dos fármacos , Tricostrongiloidíase/veterinária , Criação de Animais Domésticos , Animais , Peso Corporal , Fezes/parasitologia , Feminino , Interações Hospedeiro-Parasita , Contagem de Ovos de Parasitas/veterinária , Ovinos , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/parasitologia , Trichostrongyloidea/fisiologia , Tricostrongiloidíase/tratamento farmacológico , Tricostrongiloidíase/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA