Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139592

RESUMO

Microalgae provide valuable bio-components with economic and environmental benefits. The monitoring of microalgal production is mostly performed using different sensors and analytical methods that, although very powerful, are limited to qualified users. This study proposes an automated Raman spectroscopy-based sensor for the online monitoring of microalgal production. For this purpose, an in situ system with a sampling station was made of a light-tight optical chamber connected to a Raman probe. Microalgal cultures were routed to this chamber by pipes connected to pumps and valves controlled and programmed by a computer. The developed approach was evaluated on Parachlorella kessleri under different culture conditions at a laboratory and an industrial algal platform. As a result, more than 4000 Raman spectra were generated and analysed by statistical methods. These spectra reflected the physiological state of the cells and demonstrate the ability of the developed sensor to monitor the physiology of microalgal cells and their intracellular molecules of interest in a complex production environment.


Assuntos
Clorófitas , Microalgas , Análise Espectral Raman/métodos , Microalgas/fisiologia
2.
Sensors (Basel) ; 22(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35746134

RESUMO

Water quality monitoring requires a rapid and sensitive method that can detect multiple hazardous pollutants at trace levels. This study aims to develop a new generation of biosensors using a low-cost fiber-optic Raman device. An automatic measurement system was thus conceived, built and successfully tested with toxic substances of three different types: antibiotics, heavy metals and herbicides. Raman spectroscopy provides a multiparametric view of metabolic responses of biological organisms to these toxic agents through their spectral fingerprints. Spectral analysis identified the most susceptible macromolecules in an E. coli model strain, providing a way to determine specific toxic effects in microorganisms. The automation of Raman analysis reduces the number of spectra required per sample and the measurement time: for four samples, time was cut from 3 h to 35 min by using a multi-well sample holder without intervention from an operator. The correct classifications were, respectively, 99%, 82% and 93% for the different concentrations of norfloxacin, while the results were 85%, 93% and 81% for copper and 92%, 90% and 96% for 3,5-dichlorophenol at the three tested concentrations. The work initiated here advances the technology needed to use Raman spectroscopy coupled with bioassays so that together, they can advance field toxicological testing.


Assuntos
Técnicas Biossensoriais , Poluentes Ambientais , Metais Pesados , Automação , Escherichia coli , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA