Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vet Dermatol ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37185892

RESUMO

BACKGROUND: Oral and parenteral drug delivery in horses can be difficult. Equine-specific transdermal drug formulations offer improved ease of treatment; development of such formulations requires a deeper understanding of the structural and chemical tissue barrier of horse skin. HYPOTHESIS/OBJECTIVES: To compare the structural composition and barrier properties of equine skin. ANIMALS: Six warmblood horses (two males, four females) with no skin diseases. MATERIALS AND METHODS: Routine histological and microscopic analyses were carried out with image analysis for skin from six different anatomical locations. In vitro drug permeation was analysed using a standard Franz diffusion cell protocol coupled with reversed phase-high-performance liquid chromatography detailing flux, lag times and tissue partitioning ratios of two model drug compounds. RESULTS: Epidermal and dermal thicknesses varied between sites. The dermal and epidermal thicknesses of the croup were 1764 ± 115 µm and 36 ± 3.6 µm, respectively, and were significantly different (p < 0.05) from the inner thigh thicknesses which were 824 ± 35 µm and 49 ± 3.6 µm. Follicular density and size also varied. The highest flux for the model hydrophilic molecule (caffeine) was for the flank (3.22 ± 0.36 µg/cm2 /h), while that for the lipophilic molecule (ibuprofen) was for the inner thigh (0.12 ± 0.02 µg/cm2 /h). CONCLUSIONS AND CLINICAL RELEVANCE: Anatomical location differences in equine skin structure and small molecule permeability were demonstrated. These results can aid in the development of transdermal therapies for horses.

2.
Soft Matter ; 10(41): 8254-60, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25186562

RESUMO

Interpolymer complexes (IPCs) formed between complimentary polymers in solution have shown a wide range of applications from drug delivery to biosensors. This work describes the combined use of isothermal titration calorimetry and surface plasmon resonance to investigate the thermodynamic and kinetic processes during hydrogen-bonded interpolymer complexation. Varied polymers that are commonly used in layer-by-layer coatings and pharmaceutical preparations were selected to span a range of chemical functionalities including some known IPCs previously characterized by other techniques, and other polymer combinations with unknown outcomes. This work is the first to comprehensively detail the thermodynamic and kinetic data of hydrogen bonded IPCs, aiding understanding and detailed characterization of the complexes. The applicability of the two techniques in determining thermodynamic, gravimetric and kinetic properties of IPCs is considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA