Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(20): e2119434119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35561220

RESUMO

The ability of eukaryotic cells to differentiate surface stiffness is fundamental for many processes like stem cell development. Bacteria were previously known to sense the presence of surfaces, but the extent to which they could differentiate stiffnesses remained unclear. Here we establish that the human pathogen Pseudomonas aeruginosa actively measures surface stiffness using type IV pili (TFP). Stiffness sensing is nonlinear, as induction of the virulence factor regulator is peaked with stiffness in a physiologically important range between 0.1 kPa (similar to mucus) and 1,000 kPa (similar to cartilage). Experiments on surfaces with distinct material properties establish that stiffness is the specific biophysical parameter important for this sensing. Traction force measurements reveal that the retraction of TFP is capable of deforming even stiff substrates. We show how slow diffusion of the pilin PilA in the inner membrane yields local concentration changes at the base of TFP during extension and retraction that change with substrate stiffness. We develop a quantitative biomechanical model that explains the transcriptional response to stiffness. A competition between PilA diffusion in the inner membrane and a loss/gain of monomers during TFP extension/retraction produces substrate stiffness-dependent dynamics of the local PilA concentration. We validated this model by manipulating the ATPase activity of the TFP motors to change TFP extension and retraction velocities and PilA concentration dynamics, altering the stiffness response in a predictable manner. Our results highlight stiffness sensing as a shared behavior across biological kingdoms, revealing generalizable principles of environmental sensing across small and large cells.


Assuntos
Proteínas de Fímbrias , Fímbrias Bacterianas , Pseudomonas aeruginosa , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/fisiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Propriedades de Superfície , Transcrição Gênica
2.
Phys Rev Lett ; 130(21): 218402, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295076

RESUMO

The bacterium Myxococcus xanthus produces multicellular droplets called fruiting bodies when starved. These structures form initially through the active dewetting of a vegetative biofilm into surface-associated droplets. This motility-driven aggregation is succeeded by a primitive developmental process in which cells in the droplets mature into nonmotile spores. Here, we use atomic force microscopy to probe the mechanics of these droplets throughout their formation. Using a combination of time- and frequency-domain rheological experiments, we characterize and develop a simple model of the linear viscoelasticity of these aggregates. We then use this model to quantify how cellular behaviors predominant at different developmental times-motility during the dewetting phase and cellular sporulation during later development-manifest as decreased droplet viscosity and increased elasticity, respectively.


Assuntos
Myxococcus xanthus , Esporos Bacterianos , Proteínas de Bactérias
3.
Proc Natl Acad Sci U S A ; 115(51): 12979-12984, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30498027

RESUMO

Bacteria under external stress can reveal unexpected emergent phenotypes. We show that the intensely studied bacterium Escherichia coli can transform into long, highly motile helical filaments poized at a torsional buckling criticality when exposed to minimum inhibitory concentrations of several antibiotics. While the highly motile helices are physically either right- or left-handed, the motile helices always rotate with a right-handed angular velocity [Formula: see text], which points in the same direction as the translational velocity [Formula: see text] of the helix. Furthermore, these helical cells do not swim by a "run and tumble" but rather synchronously flip their spin [Formula: see text] and thus translational velocity-backing up rather than tumbling. By increasing the translational persistence length, these dynamics give rise to an effective diffusion coefficient up to 20 times that of a normal E. coli cell. Finally, we propose an evolutionary mechanism for this phenotype's emergence whereby the increased effective diffusivity provides a fitness advantage in allowing filamentous cells to more readily escape regions of high external stress.


Assuntos
Escherichia coli/efeitos dos fármacos , Evolução Biológica , Movimento Celular/efeitos dos fármacos , Quimiotaxia , Escherichia coli/fisiologia , Escherichia coli/ultraestrutura , Testes de Sensibilidade Microbiana , Estresse Fisiológico
4.
bioRxiv ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38853967

RESUMO

Many bacteria inhabit thin layers of water on solid surfaces both naturally in soils or on hosts or textiles and in the lab on agar hydrogels. In these environments, cells experience capillary forces, yet an understanding of how these forces shape bacterial collective behaviors remains elusive. Here, we show that the water menisci formed around bacteria lead to capillary attraction between cells while still allowing them to slide past one another. We develop an experimental apparatus that allows us to control bacterial collective behaviors by varying the strength and range of capillary forces. Combining 3D imaging and cell tracking with agent-based modeling, we demonstrate that capillary attraction organizes rod-shaped bacteria into densely packed, nematic groups, and profoundly influences their collective dynamics and morphologies. Our results suggest that capillary forces may be a ubiquitous physical ingredient in shaping microbial communities in partially hydrated environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA