Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Commun ; 15(1): 3931, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729993

RESUMO

MYC plays various roles in pluripotent stem cells, including the promotion of somatic cell reprogramming to pluripotency, the regulation of cell competition and the control of embryonic diapause. However, how Myc expression is regulated in this context remains unknown. The Myc gene lies within a ~ 3-megabase gene desert with multiple cis-regulatory elements. Here we use genomic rearrangements, transgenesis and targeted mutation to analyse Myc regulation in early mouse embryos and pluripotent stem cells. We identify a topologically-associated region that homes enhancers dedicated to Myc transcriptional regulation in stem cells of the pre-implantation and early post-implantation embryo. Within this region, we identify elements exclusively dedicated to Myc regulation in pluripotent cells, with distinct enhancers that sequentially activate during naive and formative pluripotency. Deletion of pluripotency-specific enhancers dampens embryonic stem cell competitive ability. These results identify a topologically defined enhancer cluster dedicated to early embryonic expression and uncover a modular mechanism for the regulation of Myc expression in different states of pluripotency.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes , Proteínas Proto-Oncogênicas c-myc , Animais , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Transcrição Gênica , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Masculino
2.
Cell Rep ; 42(2): 112131, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36807143

RESUMO

Fibrosis represents the common end stage of chronic organ injury independent of the initial insult, destroying tissue architecture and driving organ failure. Here we discover a population of profibrotic macrophages marked by expression of Spp1, Fn1, and Arg1 (termed Spp1 macrophages), which expands after organ injury. Using an unbiased approach, we identify the chemokine (C-X-C motif) ligand 4 (CXCL4) to be among the top upregulated genes during profibrotic Spp1 macrophage differentiation. In vitro and in vivo studies show that loss of Cxcl4 abrogates profibrotic Spp1 macrophage differentiation and ameliorates fibrosis after both heart and kidney injury. Moreover, we find that platelets, the most abundant source of CXCL4 in vivo, drive profibrotic Spp1 macrophage differentiation. Single nuclear RNA sequencing with ligand-receptor interaction analysis reveals that macrophages orchestrate fibroblast activation via Spp1, Fn1, and Sema3 crosstalk. Finally, we confirm that Spp1 macrophages expand in both human chronic kidney disease and heart failure.


Assuntos
Macrófagos , Miofibroblastos , Humanos , Fibrose , Ligantes , Macrófagos/metabolismo , Miofibroblastos/metabolismo , Osteopontina , Fator Plaquetário 4/genética , Fator Plaquetário 4/metabolismo
3.
Front Immunol ; 13: 1066176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591270

RESUMO

Introduction: SARS-CoV-2 infection results in varying disease severity, ranging from asymptomatic infection to severe illness. A detailed understanding of the immune response to SARS-CoV-2 is critical to unravel the causative factors underlying differences in disease severity and to develop optimal vaccines against new SARS-CoV-2 variants. Methods: We combined single-cell RNA and T cell receptor sequencing with CITE-seq antibodies to characterize the CD8+ T cell response to SARS-CoV-2 infection at high resolution and compared responses between mild and severe COVID-19. Results: We observed increased CD8+ T cell exhaustion in severe SARS-CoV-2 infection and identified a population of NK-like, terminally differentiated CD8+ effector T cells characterized by expression of FCGR3A (encoding CD16). Further characterization of NK-like CD8+ T cells revealed heterogeneity among CD16+ NK-like CD8+ T cells and profound differences in cytotoxicity, exhaustion, and NK-like differentiation between mild and severe disease conditions. Discussion: We propose a model in which differences in the surrounding inflammatory milieu lead to crucial differences in NK-like differentiation of CD8+ effector T cells, ultimately resulting in the appearance of NK-like CD8+ T cell populations of different functionality and pathogenicity. Our in-depth characterization of the CD8+ T cell-mediated response to SARS-CoV-2 infection provides a basis for further investigation of the importance of NK-like CD8+ T cells in COVID-19 severity.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , SARS-CoV-2 , Anticorpos
4.
Nat Commun ; 12(1): 4344, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272393

RESUMO

Poised enhancers (PEs) represent a genetically distinct set of distal regulatory elements that control the expression of major developmental genes. Before becoming activated in differentiating cells, PEs are already bookmarked in pluripotent cells with unique chromatin and topological features that could contribute to their privileged regulatory properties. However, since PEs were originally characterized in embryonic stem cells (ESC), it is currently unknown whether PEs are functionally conserved in vivo. Here, we show that the chromatin and 3D structural features of PEs are conserved among mouse pluripotent cells both in vitro and in vivo. We also uncovered that the interactions between PEs and their target genes are globally controlled by the combined action of Polycomb, Trithorax and architectural proteins. Moreover, distal regulatory sequences located close to developmental genes and displaying the typical genetic (i.e. CpG islands) and chromatin (i.e. high accessibility and H3K27me3 levels) features of PEs are commonly found across vertebrates. These putative PEs show high sequence conservation within specific vertebrate clades, with only a few being evolutionary conserved across all vertebrates. Lastly, by genetically disrupting PEs in mouse and chicken embryos, we demonstrate that these regulatory elements play essential roles during the induction of major developmental genes in vivo.


Assuntos
Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Embrião de Galinha , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Ilhas de CpG , Células-Tronco Embrionárias/efeitos dos fármacos , Epigênese Genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camadas Germinativas/metabolismo , Homozigoto , Camundongos , Filogenia , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Fatores de Transcrição/genética
5.
Nat Commun ; 12(1): 5771, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599190

RESUMO

Germline specification in mammals occurs through an inductive process whereby competent cells in the post-implantation epiblast differentiate into primordial germ cells (PGC). The intrinsic factors that endow epiblast cells with the competence to respond to germline inductive signals remain unknown. Single-cell RNA sequencing across multiple stages of an in vitro PGC-like cells (PGCLC) differentiation system shows that PGCLC genes initially expressed in the naïve pluripotent stage become homogeneously dismantled in germline competent epiblast like-cells (EpiLC). In contrast, the decommissioning of enhancers associated with these germline genes is incomplete. Namely, a subset of these enhancers partly retain H3K4me1, accumulate less heterochromatic marks and remain accessible and responsive to transcriptional activators. Subsequently, as in vitro germline competence is lost, these enhancers get further decommissioned and lose their responsiveness to transcriptional activators. Importantly, using H3K4me1-deficient cells, we show that the loss of this histone modification reduces the germline competence of EpiLC and decreases PGCLC differentiation efficiency. Our work suggests that, although H3K4me1 might not be essential for enhancer function, it can facilitate the (re)activation of enhancers and the establishment of gene expression programs during specific developmental transitions.


Assuntos
Elementos Facilitadores Genéticos , Células Germinativas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Animais , Diferenciação Celular , Cromatina/metabolismo , Embrião de Mamíferos/citologia , Regulação da Expressão Gênica , Células Germinativas/citologia , Camadas Germinativas/citologia , Masculino , Metilação , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/citologia , Mutação/genética , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , RNA-Seq , Análise de Célula Única , Sítio de Iniciação de Transcrição , Transcrição Gênica
6.
Nat Genet ; 53(7): 1036-1049, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34183853

RESUMO

CpG islands (CGIs) represent a widespread feature of vertebrate genomes, being associated with ~70% of all gene promoters. CGIs control transcription initiation by conferring nearby promoters with unique chromatin properties. In addition, there are thousands of distal or orphan CGIs (oCGIs) whose functional relevance is barely known. Here we show that oCGIs are an essential component of poised enhancers that augment their long-range regulatory activity and control the responsiveness of their target genes. Using a knock-in strategy in mouse embryonic stem cells, we introduced poised enhancers with or without oCGIs within topologically associating domains harboring genes with different types of promoters. Analysis of the resulting cell lines revealed that oCGIs act as tethering elements that promote the physical and functional communication between poised enhancers and distally located genes, particularly those with large CGI clusters in their promoters. Therefore, by acting as genetic determinants of gene-enhancer compatibility, CGIs can contribute to gene expression control under both physiological and potentially pathological conditions.


Assuntos
Ilhas de CpG , Metilação de DNA , Elementos Facilitadores Genéticos , Epigênese Genética , Regulação da Expressão Gênica , Animais , Cromatina/genética , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Técnicas de Introdução de Genes , Camundongos , Regiões Promotoras Genéticas
7.
Curr Opin Cell Biol ; 61: 1-8, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31233905

RESUMO

In mammals, germline specification is induced during early embryogenesis when competent cells respond to extrinsic signals and form primordial germ cells (PGCs), the precursors of the gametes. The fusion of the two types of gametes, the egg and the sperm, gives rise to a new organism and closes the germline cycle. With the entry of the germline, the PGCs are separated from the soma and thus ensure the self-perpetuation of the species. Using the mouse as a model of mammalian embryogenesis, in this review we will focus on the transcriptional and epigenetic changes that regulate the initial steps of germline development, namely germline competence and PGC specification.


Assuntos
Epigênese Genética , Células Germinativas/metabolismo , Animais , Metilação de DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Humanos , Transcrição Gênica
8.
PLoS One ; 14(3): e0210940, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840628

RESUMO

Biosensors have emerged as a valuable tool with high specificity and sensitivity for fast and reliable detection of hazardous substances in drinking water. Numerous substances have been addressed using synthetic biology approaches. However, many proposed biosensors are based on living, genetically modified organisms and are therefore limited in shelf life, usability and biosafety. We addressed these issues by the construction of an extensible, cell-free biosensor. Storage is possible through freeze drying on paper. Following the addition of an aqueous sample, a highly efficient cell-free protein synthesis (CFPS) reaction is initiated. Specific allosteric transcription factors modulate the expression of 'superfolder' green fluorescent protein (sfGFP) depending on the presence of the substance of interest. The resulting fluorescence intensities are analyzed with a conventional smartphone accompanied by simple and cheap light filters. An ordinary differential equitation (ODE) model of the biosensors was developed, which enabled prediction and optimization of performance. With an optimized cell-free biosensor based on the Shigella flexneri MerR transcriptional activator, detection of 6 µg/L Hg(II) ions in water was achieved. Furthermore, a completely new biosensor for the detection of gamma-hydroxybutyrate (GHB), a substance used as date-rape drug, was established by employing the naturally occurring transcriptional repressor BlcR from Agrobacterium tumefaciens.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas de Fluorescência Verde/análise , Hidroxibutiratos/análise , Drogas Ilícitas/análise , Metais Pesados/análise , Detecção do Abuso de Substâncias/métodos , Poluentes Químicos da Água/análise , Sistema Livre de Células , Humanos , Estupro/diagnóstico
9.
Cell Stem Cell ; 24(5): 736-752.e12, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982769

RESUMO

The pathological consequences of structural variants disrupting 3D genome organization can be difficult to elucidate in vivo due to differences in gene dosage sensitivity between mice and humans. This is illustrated by branchiooculofacial syndrome (BOFS), a rare congenital disorder caused by heterozygous mutations within TFAP2A, a neural crest regulator for which humans, but not mice, are haploinsufficient. Here, we present a BOFS patient carrying a heterozygous inversion with one breakpoint located within a topologically associating domain (TAD) containing enhancers essential for TFAP2A expression in human neural crest cells (hNCCs). Using patient-specific hiPSCs, we show that, although the inversion shuffles the TFAP2A hNCC enhancers with novel genes within the same TAD, this does not result in enhancer adoption. Instead, the inversion disconnects one TFAP2A allele from its cognate enhancers, leading to monoallelic and haploinsufficient TFAP2A expression in patient hNCCs. Our work illustrates the power of hiPSC differentiation to unveil long-range pathomechanisms.


Assuntos
Síndrome Brânquio-Otorrenal/genética , Variação Estrutural do Genoma/genética , Mutação/genética , Crista Neural/fisiologia , Fator de Transcrição AP-2/metabolismo , Adolescente , Alelos , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Elementos Facilitadores Genéticos/genética , Haploinsuficiência , Humanos , Masculino , Camundongos , Análise de Célula Única , Fator de Transcrição AP-2/genética
10.
Genome Biol ; 19(1): 62, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843790

RESUMO

BACKGROUND: While CRISPR-Cas systems hold tremendous potential for engineering the human genome, it is unclear how well each system performs against one another in both non-homologous end joining (NHEJ)-mediated and homology-directed repair (HDR)-mediated genome editing. RESULTS: We systematically compare five different CRISPR-Cas systems in human cells by targeting 90 sites in genes with varying expression levels. For a fair comparison, we select sites that are either perfectly matched or have overlapping seed regions for Cas9 and Cpf1. Besides observing a trade-off between cleavage efficiency and target specificity for these natural endonucleases, we find that the editing activities of the smaller Cas9 enzymes from Staphylococcus aureus (SaCas9) and Neisseria meningitidis (NmCas9) are less affected by gene expression than the other larger Cas proteins. Notably, the Cpf1 nucleases from Acidaminococcus sp. BV3L6 and Lachnospiraceae bacterium ND2006 (AsCpf1 and LbCpf1, respectively) are able to perform precise gene targeting efficiently across multiple genomic loci using single-stranded oligodeoxynucleotide (ssODN) donor templates with homology arms as short as 17 nucleotides. Strikingly, the two Cpf1 nucleases exhibit a preference for ssODNs of the non-target strand sequence, while the popular Cas9 enzyme from Streptococcus pyogenes (SpCas9) exhibits a preference for ssODNs of the target strand sequence instead. Additionally, we find that the HDR efficiencies of Cpf1 and SpCas9 can be further improved by using asymmetric donors with longer arms 5' of the desired DNA changes. CONCLUSIONS: Our work delineates design parameters for each CRISPR-Cas system and will serve as a useful reference for future genome engineering studies.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Reparo do DNA por Junção de Extremidades , Reparo do DNA , DNA de Cadeia Simples/metabolismo , Humanos , Oligodesoxirribonucleotídeos , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA