Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 28(1): 485-493, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118974

RESUMO

Strong optical mode coupling between two adjacent λ/2 Fabry-Pérot microresonators consisting of three parallel silver mirrors is investigated experimentally and theoretically as a function of their detuning and coupling strength. Mode coupling can be precisely controlled by tuning the mirror spacing of one resonator with respect to the other by piezoelectric actuators. Mode splitting, anti-crossing and asymmetric modal damping are observed and theoretically discussed for the symmetric and antisymmetric supermodes of the coupled system. The spectral profile of the supermodes is obtained from the Fourier transform of the numerically calculated time evolution of the individual resonator modes, taking into account their resonance frequencies, damping and coupling constants, and is in excellent agreement with the experiments. Our microresonator design has potential applications for energy transfer between spatially separated quantum systems in micro optoelectronics and for the emerging field of polaritonic chemistry.

2.
Sensors (Basel) ; 18(4)2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29642380

RESUMO

Turbidity sensing is very common in the control of drinking water. Furthermore, turbidity measurements are applied in the chemical (e.g., process monitoring), pharmaceutical (e.g., drug discovery), and food industries (e.g., the filtration of wine and beer). The most common measurement technique is nephelometric turbidimetry. A nephelometer is a device for measuring the amount of scattered light of suspended particles in a liquid by using a light source and a light detector orientated in 90° to each other. Commercially available nephelometers cost usually-depending on the measurable range, reliability, and precision-thousands of euros. In contrast, our new developed GRIN-lens-based nephelometer, called GRINephy, combines low costs with excellent reproducibility and precision, even at very low turbidity levels, which is achieved by its ability to rotate the sample. Thereby, many cuvette positions can be measured, which results in a more precise average value for the turbidity calculated by an algorithm, which also eliminates errors caused by scratches and contaminations on the cuvettes. With our compact and cheap Arduino-based sensor, we are able to measure in the range of 0.1-1000 NTU and confirm the ISO 7027-1:2016 for low turbidity values.

3.
Front Med Technol ; 5: 1211423, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045886

RESUMO

Parylene C is well-known as an encapsulation material for medical implants. Within the approach of miniaturization and automatization of a bone distractor, piezoelectric actuators were encapsulated with Parylene C. The stretchability of the polymer was investigated with respect to the encapsulation functionality of piezoelectric chips. We determined a linear yield strain of 1% of approximately 12-µm-thick Parylene C foil. Parylene C encapsulation withstands the mechanical stress of a minimum of 5×105 duty cycles by continuous actuation. The experiments demonstrate that elongation of the encapsulation on piezoelectric actuators and thus the elongation of Parylene C up to 0.8 mm are feasible.

4.
ACS Appl Mater Interfaces ; 13(3): 3536-3546, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33438388

RESUMO

TiO2 thin films were deposited on the orthopedic implant material polyetheretherketone (PEEK) by plasma enhanced atomic layer deposition (PEALD) and characterized for their ability to enhance the osseointegrative properties. PEALD was chosen for film deposition to circumvent drawbacks present in line-of-sight deposition techniques, which require technically complex setups for a homogeneous coating thickness. Film conformality was analyzed on silicon 3D test structures and PEEK with micron-scale surface roughness. Wettability and surface energy were determined through contact angle measurements; film roughness and crystallinity were determined by atomic force microscopy and X-ray diffraction, respectively. Adhesion properties of TiO2 on PEEK were determined with tensile strength tests. Cell tests were performed with the mouse mesenchymal tumor stem cell line ST-2. TiO2-coated PEEK disks were used as substrates for cell proliferation tests and long-term differentiation tests. After 28 days of cultivation, a mineralized bone matrix was observed. Furthermore, the collagen I and osteocalcin content were determined. The results reveal that the osteogenic properties of the TiO2 thin film are comparable to those of hydroxyapatite, and thus bioactive properties of PEEK implants are improved by TiO2 thin films deposited with PEALD.

5.
Chem Commun (Camb) ; 52(100): 14392-14395, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27892555

RESUMO

A facile method is described to prepare micron partly hollow dumbbell silica particles in a single step. The obtained particles consist of a large dense part and a small hollow lobe. The spherical dense core as well as the hollow lobe are covered by mesoporous channels. In the case of the smaller lobe these channels are responsible for the permeability of the shell which was demonstrated by confocal imaging and spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA