Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
FASEB J ; 34(6): 7825-7846, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32297676

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown cause that is characterized by progressive fibrotic lung remodeling. An abnormal emergence of airway epithelial-like cells within the alveolar compartments of the lung, herein termed bronchiolization, is often observed in IPF. However, the origin of this dysfunctional distal lung epithelium remains unknown due to a lack of suitable human model systems. In this study, we established a human induced pluripotent stem cell (iPSC)-derived air-liquid interface (ALI) model of alveolar epithelial type II (ATII)-like cell differentiation that allows us to investigate alveolar epithelial progenitor cell differentiation in vitro. We treated this system with an IPF-relevant cocktail (IPF-RC) to mimic the pro-fibrotic cytokine milieu present in IPF lungs. Stimulation with IPF-RC during differentiation increases secretion of IPF biomarkers and RNA sequencing (RNA-seq) of these cultures reveals significant overlap with human IPF patient data. IPF-RC treatment further impairs ATII differentiation by driving a shift toward an airway epithelial-like expression signature, providing evidence that a pro-fibrotic cytokine environment can influence the proximo-distal differentiation pattern of human lung epithelial cells. In conclusion, we show for the first time, the establishment of a human model system that recapitulates aspects of IPF-associated bronchiolization of the lung epithelium in vitro.


Assuntos
Células Epiteliais Alveolares/patologia , Fibrose Pulmonar Idiopática/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Alvéolos Pulmonares/patologia , Células Epiteliais Alveolares/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Citocinas/metabolismo , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Alvéolos Pulmonares/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia
2.
Sci Rep ; 11(1): 17028, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426605

RESUMO

In order to circumvent the limited access and donor variability of human primary alveolar cells, directed differentiation of human pluripotent stem cells (hiPSCs) into alveolar-like cells, provides a promising tool for respiratory disease modeling and drug discovery assays. In this work, a unique, miniaturized 96-Transwell microplate system is described where hiPSC-derived alveolar-like cells were cultured at an air-liquid interface (ALI). To this end, hiPSCs were differentiated into lung epithelial progenitor cells (LPCs) and subsequently matured into a functional alveolar type 2 (AT2)-like epithelium with monolayer-like morphology. AT2-like cells cultured at the physiological ALI conditions displayed characteristics of AT2 cells with classical alveolar surfactant protein expressions and lamellar-body like structures. The integrity of the epithelial barriers between the AT2-like cells was confirmed by applying a custom-made device for 96-parallelized transepithelial electric resistance (TEER) measurements. In order to generate an IPF disease-like phenotype in vitro, the functional AT2-like cells were stimulated with cytokines and growth factors present in the alveolar tissue of IPF patients. The cytokines stimulated the secretion of pro-fibrotic biomarker proteins both on the mRNA (messenger ribonucleic acid) and protein level. Thus, the hiPSC-derived and cellular model system enables the recapitulation of certain IPF hallmarks, while paving the route towards a miniaturized medium throughput approach of pharmaceutical drug discovery.


Assuntos
Ar , Técnicas de Cultura de Células , Células-Tronco Pluripotentes Induzidas/citologia , Miniaturização , Modelos Biológicos , Alvéolos Pulmonares/citologia , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Fenótipo , Alvéolos Pulmonares/ultraestrutura , Fibrose Pulmonar/patologia , Transcrição Gênica
3.
Sci Rep ; 10(1): 13022, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747751

RESUMO

In order to overcome the challenges associated with a limited number of airway epithelial cells that can be obtained from clinical sampling and their restrained capacity to divide ex vivo, miniaturization of respiratory drug discovery assays is of pivotal importance. Thus, a 96-well microplate system was developed where primary human small airway epithelial (hSAE) cells were cultured at an air-liquid interface (ALI). After four weeks of ALI culture, a pseudostratified epithelium containing basal, club, goblet and ciliated cells was produced. The 96-well ALI cultures displayed a cellular composition, ciliary beating frequency, and intercellular tight junctions similar to 24-well conditions. A novel custom-made device for 96-parallelized transepithelial electric resistance (TEER) measurements, together with dextran permeability measurements, confirmed that the 96-well culture developed a tight barrier function during ALI differentiation. 96-well hSAE cultures were responsive to transforming growth factor ß1 (TGF-ß1) and tumor necrosis factor α (TNF-α) in a concentration dependent manner. Thus, the miniaturized cellular model system enables the recapitulation of a physiologically responsive, differentiated small airway epithelium, and a robotic integration provides a medium throughput approach towards pharmaceutical drug discovery, for instance, in respect of fibrotic distal airway/lung diseases.


Assuntos
Bronquíolos/citologia , Células Epiteliais/citologia , Miniaturização/instrumentação , Miniaturização/métodos , Modelos Biológicos , Ar , Automação , Biomarcadores/metabolismo , Células Cultivadas , Fibrose , Humanos , Mucosa Respiratória/citologia
4.
Methods Mol Biol ; 1994: 101-115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31124108

RESUMO

In drug discovery, there is an increasing demand for more physiological in vitro models that recapitulate the disease situation in patients. Human induced pluripotent stem (hiPS) cell-derived model cells could serve this purpose. To date, several directed differentiation approaches have been described to generate definitive endoderm (DE) from hiPS cells, but protocols suitable for drug development and high-throughput screening (HTS) have not been reported yet. In this work, a large-scale expansion of hiPS cells for high-throughput adaption is presented and an optimized stepwise differentiation of hiPS cells into DE cells is described. The produced DE cells were demonstrated to express classical DE markers on the gene expression and protein level. The here described DE cells are multipotent progenitors and act as starting points for a broad spectrum of endodermal model cells in HTS and other areas of drug discovery.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Endoderma/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Descoberta de Drogas , Endoderma/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo
5.
Mol Imaging Biol ; 18(5): 697-704, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26884057

RESUMO

PURPOSE: In humans, colonoscopy is the gold standard for the diagnosis of inflammatory changes of the colon wall. Aim of this study was the identification of less invasive imaging biomarkers in the dextran sodium sulfate (DSS) colitis model to provide additional information on transmural changes of the colon wall. PROCEDURES: Colitis was induced in C57BL/6 mice by administration of 2, 3, and 4 % DSS over a period of 5 days. Colon wall thickness was measured using magnetic resonance imaging (MRI), ultrasound (US), and x-ray computed tomography (CT), gut inflammation by positron emission tomography/CT, and mucosal changes of the colon wall by colonoscopy. Colon samples were examined histologically. RESULTS: MRI, CT, US, and histological data revealed increased colon wall thickness in DSS-treated mice compared to healthy controls. Elevated 2-deoxy-2[(18)F]fluoro-D-glucose uptake and colonoscopy confirmed high inflammatory load in the guts of colitis mice. CONCLUSIONS: The established quantitative imaging readouts offer promising perspectives to develop new compounds and to translate these methods into the clinical setting.


Assuntos
Biomarcadores/metabolismo , Colite/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Animais , Colite/patologia , Colo/patologia , Sulfato de Dextrana , Feminino , Inflamação/patologia , Camundongos Endogâmicos C57BL
6.
Inflamm Bowel Dis ; 22(6): 1286-95, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27104818

RESUMO

BACKGROUND: Colonoscopy is the gold standard to diagnose and follow up the evolution of inflammatory bowel diseases. However, this technique can still present a risk of severe complications, a general discomfort in patients, and its diagnostic value is limited to the visualization of the colon mucosal changes. Magnetic resonance imaging (MRI) is emerging as a noninvasive imaging technique of choice to overcome these limitations. The aim of this work was to evaluate the potential of colon wall thickness measured using MRI as an in vivo imaging biomarker of inflammation for inflammatory bowel disease in an animal model of this disease. METHODS: On day 0, 2% or 3% Dextran sodium sulfate was added to the drinking water of mice (n = 10/group) for 5 days. Six mice were left as controls. Animals were imaged with colonoscopy and MRI on days 7, 11, and 21 to study the colitis progression. Histology was performed at the end of the protocol. RESULTS: The colon wall thickness measured in Dextran sodium sulfate-treated animals was shown to be significantly and dose dependently increased compared to controls. Colonoscopy showed similar results and excellently correlated with MRI measurements and histology. The proposed protocol showed high robustness, with negligible interoperator and intraoperator variability. CONCLUSIONS: The findings of this investigation suggest the feasibility of using MRI for the noninvasive assessment of colon wall thickness as a robust surrogate biomarker for colon inflammation detection and follow-up. The data presented show the potential of MRI in in vivo preclinical longitudinal studies, including testing of new drugs or investigation of inflammatory bowel disease development mechanisms.


Assuntos
Colite/diagnóstico por imagem , Colo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Animais , Biomarcadores , Biópsia , Colite/induzido quimicamente , Colite/patologia , Colo/patologia , Colonoscopia , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Estudos Longitudinais , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA