Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 108(3): 035502, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22400758

RESUMO

Current models for molecular electrical doping of organic semiconductors are found to be at odds with other well-established concepts in that field, like polaron formation. Addressing these inconsistencies for prototypical systems, we present experimental and theoretical evidence for intermolecular hybridization of organic semiconductor and dopant frontier molecular orbitals. Common doping-related observations are attributed to this phenomenon, and controlling the degree of hybridization emerges as a strategy for overcoming the present limitations in the yield of doping-induced charge carriers.

2.
Chemphyschem ; 10(17): 2947-54, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19856371

RESUMO

The molecular donor 9,9'-ethane-1,2-diylidene-bis(N-methyl-9,10-dihydroacridine) (NMA) has been synthesized, and its electronic properties were characterized both in solution using cyclic voltammetry and optical absorption spectroscopy, and at interfaces to metals with photoelectron spectroscopy (PES). The optical energy gap of NMA in solution increases by 0.10 eV when the compound is doubly oxidized. On the basis of quantum-chemical calculations, this ipsochromic effect is rationalized by a change in geometry involving a severe torsion of the two acridinium moieties with respect to the central double bond, thus reducing conjugation upon oxidation. PES is reported for NMA deposited on Au(111), Ag(111), and Cu(111) single crystals. A decrease of the sample work function is observed that becomes larger with increasing molecular coverage and clearly exceeds values that would be expected for metal surface electron "push back" alone, confirming the electron donating nature of NMA. The growth mode of NMA on all three surfaces is almost layer-by-layer (Frank-van der Merwe). For tris(8-hydroxyquinoline)aluminum (Alq(3)) deposited on top of a NMA-modified Au(111) surface, the electron injection barrier (EIB) is reduced by 0.25 eV compared to that on pristine Au(111). Furthermore, the EIB reduction depends linearly on Phi of the donor-modified Au(111) surface, adjustable by NMA precoverage. This enables continuous tuning of the EIB in organic electronic devices, in order to optimize device efficiency and performance.

3.
Sci Rep ; 6: 21291, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26887445

RESUMO

We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure - in the presence of Fermi-level pinning - at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction's electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices.

4.
Nano Lett ; 8(11): 3825-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18954123

RESUMO

C60 adsorbed on a monolayer of hexaazatriphenylene-hexanitrile (HATCN) on Ag(111) is investigated by ultraviolet photoelectron spectroscopy (UPS) and scanning tunneling microscopy. UPS and quantum-mechanical modeling show that HATCN chemisorbed on Ag(111) displays metallic character. This metallic molecular layer decouples C60 electronically from the Ag substrate and simultaneously acts both as template for the stable adsorption of isolated C60 molecules at room temperature and as "soft" metallic contact for subsequently deposited molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA