Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur J Neurosci ; 54(12): 8421-8440, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32909315

RESUMO

Brain activity during natural walking outdoors can be captured using mobile electroencephalography (EEG). However, EEG recorded during gait is confounded with artifacts from various sources, possibly obstructing the interpretation of brain activity patterns. Currently, there is no consensus on how the amount of artifact present in these recordings should be quantified, or is there a systematic description of gait artifact properties. In the current study, we expand several features into a seven-dimensional footprint of gait-related artifacts, combining features of time, time-frequency, spatial, and source domains. EEG of N = 26 participants was recorded while standing and walking outdoors. Footprints of gait-related artifacts before and after two different artifact attenuation strategies (after artifact subspace reconstruction (ASR) and after subsequent independent component analysis [ICA]) were systematically different. We also evaluated topographies, morphologies, and signal-to-noise ratios (SNR) of button-press event-related potentials (ERP) before and after artifact handling, to confirm gait-artifact reduction specificity. Morphologies and SNR remained unchanged after artifact attenuation, whereas topographies improved in quality. Our results show that the footprint can provide a detailed assessment of gait-related artifacts and can be used to estimate the sensitivity of different artifact reduction strategies. Moreover, the analysis of button-press ERPs demonstrated its specificity, as processing did not only reduce gait-related artifacts but ERPs of interest remained largely unchanged. We conclude that the proposed footprint is well suited to characterize individual differences in gait-related artifact extent. In the future, it could be used to compare and optimize recording setups and processing pipelines comprehensively.


Assuntos
Artefatos , Processamento de Sinais Assistido por Computador , Algoritmos , Encéfalo , Eletroencefalografia/métodos , Marcha , Humanos
2.
Sensors (Basel) ; 21(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34884139

RESUMO

The streaming and recording of smartphone sensor signals is desirable for mHealth, telemedicine, environmental monitoring and other applications. Time series data gathered in these fields typically benefit from the time-synchronized integration of different sensor signals. However, solutions required for this synchronization are mostly available for stationary setups. We hope to contribute to the important emerging field of portable data acquisition by presenting open-source Android applications both for the synchronized streaming (Send-a) and recording (Record-a) of multiple sensor data streams. We validate the applications in terms of functionality, flexibility and precision in fully mobile setups and in hybrid setups combining mobile and desktop hardware. Our results show that the fully mobile solution is equivalent to well-established desktop versions. With the streaming application Send-a and the recording application Record-a, purely smartphone-based setups for mobile research and personal health settings can be realized on off-the-shelf Android devices.


Assuntos
Aplicativos Móveis , Telemedicina , Smartphone , Fatores de Tempo
3.
Sensors (Basel) ; 19(6)2019 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884825

RESUMO

Recent technological progress has allowed the development of low-cost and highly portable brain sensors such as pre-amplified dry-electrodes to measure cognitive activity out of the laboratory. This technology opens promising perspectives to monitor the "brain at work" in complex real-life situations such as while operating aircraft. However, there is a need to benchmark these sensors in real operational conditions. We therefore designed a scenario in which twenty-two pilots equipped with a six-dry-electrode EEG system had to perform one low load and one high load traffic pattern along with a passive auditory oddball. In the low load condition, the participants were monitoring the flight handled by a flight instructor, whereas they were flying the aircraft in the high load condition. At the group level, statistical analyses disclosed higher P300 amplitude for the auditory target (Pz, P4 and Oz electrodes) along with higher alpha band power (Pz electrode), and higher theta band power (Oz electrode) in the low load condition as compared to the high load one. Single trial classification accuracy using both event-related potentials and event-related frequency features at the same time did not exceed chance level to discriminate the two load conditions. However, when considering only the frequency features computed over the continuous signal, classification accuracy reached around 70% on average. This study demonstrates the potential of dry-EEG to monitor cognition in a highly ecological and noisy environment, but also reveals that hardware improvement is still needed before it can be used for everyday flight operations.

4.
Front Neurogenom ; 3: 793061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38235458

RESUMO

With smartphone-based mobile electroencephalography (EEG), we can investigate sound perception beyond the lab. To understand sound perception in the real world, we need to relate naturally occurring sounds to EEG data. For this, EEG and audio information need to be synchronized precisely, only then it is possible to capture fast and transient evoked neural responses and relate them to individual sounds. We have developed Android applications (AFEx and Record-a) that allow for the concurrent acquisition of EEG data and audio features, i.e., sound onsets, average signal power (RMS), and power spectral density (PSD) on smartphone. In this paper, we evaluate these apps by computing event-related potentials (ERPs) evoked by everyday sounds. One participant listened to piano notes (played live by a pianist) and to a home-office soundscape. Timing tests showed a stable lag and a small jitter (< 3 ms) indicating a high temporal precision of the system. We calculated ERPs to sound onsets and observed the typical P1-N1-P2 complex of auditory processing. Furthermore, we show how to relate information on loudness (RMS) and spectra (PSD) to brain activity. In future studies, we can use this system to study sound processing in everyday life.

5.
Front Sports Act Living ; 4: 945341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275441

RESUMO

Walking on natural terrain while performing a dual-task, such as typing on a smartphone is a common behavior. Since dual-tasking and terrain change gait characteristics, it is of interest to understand how altered gait is reflected by changes in gait-associated neural signatures. A study was performed with 64-channel electroencephalography (EEG) of healthy volunteers, which was recorded while they walked over uneven and even terrain outdoors with and without performing a concurrent task (self-paced button pressing with both thumbs). Data from n = 19 participants (M = 24 years, 13 females) were analyzed regarding gait-phase related power modulations (GPM) and gait performance (stride time and stride time-variability). GPMs changed significantly with terrain, but not with the task. Descriptively, a greater beta power decrease following right-heel strikes was observed on uneven compared to even terrain. No evidence of an interaction was observed. Beta band power reduction following the initial contact of the right foot was more pronounced on uneven than on even terrain. Stride times were longer on uneven compared to even terrain and during dual- compared to single-task gait, but no significant interaction was observed. Stride time variability increased on uneven terrain compared to even terrain but not during single- compared to dual-tasking. The results reflect that as the terrain difficulty increases, the strides become slower and more irregular, whereas a secondary task slows stride duration only. Mobile EEG captures GPM differences linked to terrain changes, suggesting that the altered gait control demands and associated cortical processes can be identified. This and further studies may help to lay the foundation for protocols assessing the cognitive demand of natural gait on the motor system.

6.
Front Neurosci ; 16: 904003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117630

RESUMO

Recent advancements in neuroscientific research and miniaturized ear-electroencephalography (EEG) technologies have led to the idea of employing brain signals as additional input to hearing aid algorithms. The information acquired through EEG could potentially be used to control the audio signal processing of the hearing aid or to monitor communication-related physiological factors. In previous work, we implemented a research platform to develop methods that utilize EEG in combination with a hearing device. The setup combines currently available mobile EEG hardware and the so-called Portable Hearing Laboratory (PHL), which can fully replicate a complete hearing aid. Audio and EEG data are synchronized using the Lab Streaming Layer (LSL) framework. In this study, we evaluated the setup in three scenarios focusing particularly on the alignment of audio and EEG data. In Scenario I, we measured the latency between software event markers and actual audio playback of the PHL. In Scenario II, we measured the latency between an analog input signal and the sampled data stream of the EEG system. In Scenario III, we measured the latency in the whole setup as it would be used in a real EEG experiment. The results of Scenario I showed a jitter (standard deviation of trial latencies) of below 0.1 ms. The jitter in Scenarios II and III was around 3 ms in both cases. The results suggest that the increased jitter compared to Scenario I can be attributed to the EEG system. Overall, the findings show that the measurement setup can time-accurately present acoustic stimuli while generating LSL data streams over multiple hours of playback. Further, the setup can capture the audio and EEG LSL streams with sufficient temporal accuracy to extract event-related potentials from EEG signals. We conclude that our setup is suitable for studying closed-loop EEG & audio applications for future hearing aids.

7.
J Neural Eng ; 17(3): 034003, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32380486

RESUMO

OBJECTIVE: In this report we present the fEEGrid, an electrode array applied to the forehead that allows convenient long-term recordings of electroencephalography (EEG) signals over many hours. APPROACH: Twenty young, healthy participants wore the fEEGrid and completed traditional EEG paradigms in two sessions on the same day. The sessions were eight hours apart, participants performed the same tasks in an early and a late session. For the late session fEEGrid data were concurrently recorded with traditional cap EEG data. MAIN RESULTS: Our analyses show that typical event-related potentials responses were captured reliably by the fEEGrid. Single-trial analyses revealed that classification was possible above chance level for auditory and tactile oddball paradigms. We also found that the signal quality remained high and impedances did not deteriorate, but instead improved over the course of the day. Regarding wearing comfort, all participants indicated that the fEEGrid was comfortable to wear and did not cause any pain even after 8 h of wearing it. SIGNIFICANCE: We show in this report, that high quality EEG signals can be captured with the fEEGrid reliably, even in long-term recording scenarios and with a signal quality that may be considered suitable for online brain-computer Interface applications.


Assuntos
Interfaces Cérebro-Computador , Testa , Eletrodos , Eletroencefalografia , Potenciais Evocados , Humanos
8.
Front Hum Neurosci ; 13: 141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105543

RESUMO

Artifact Subspace Reconstruction (ASR) is an adaptive method for the online or offline correction of artifacts comprising multichannel electroencephalography (EEG) recordings. It repeatedly computes a principal component analysis (PCA) on covariance matrices to detect artifacts based on their statistical properties in the component subspace. We adapted the existing ASR implementation by using Riemannian geometry for covariance matrix processing. EEG data that were recorded on smartphone in both outdoors and indoors conditions were used for evaluation (N = 27). A direct comparison between the original ASR and Riemannian ASR (rASR) was conducted for three performance measures: reduction of eye-blinks (sensitivity), improvement of visual-evoked potentials (VEPs) (specificity), and computation time (efficiency). Compared to ASR, our rASR algorithm performed favorably on all three measures. We conclude that rASR is suitable for the offline and online correction of multichannel EEG data acquired in laboratory and in field conditions.

9.
Biomed Res Int ; 2017: 3072870, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29349070

RESUMO

OBJECTIVE: Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. APPROACH: In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. MAIN RESULTS: We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. SIGNIFICANCE: We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms.


Assuntos
Eletroencefalografia/instrumentação , Aplicativos Móveis , Processamento de Sinais Assistido por Computador/instrumentação , Smartphone , Adulto , Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA