Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(2): e23415, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38243682

RESUMO

Emerging evidence suggests that stem cell-derived extracellular vesicles (EVs) may induce pro-regenerative effects in ischemic tissues by delivering bioactive molecules, including microRNAs. Recent studies have also shown pro-regenerative benefits of EVs derived from induced pluripotent stem (iPS) cells. However, the underlying mechanisms of EV benefits and the role of their transferred regulatory molecules remain incompletely understood. Accordingly, we investigated the effects of human iPS-derived EVs (iPS-EVs) enriched in proangiogenic miR-126 (iPS-miR-126-EVs) on functional properties of human endothelial cells (ECs) in vitro. We also examined the outcomes following EV injection in a murine model of limb ischemia in vivo. EVs were isolated from conditioned media from cultures of unmodified and genetically modified human iPS cells overexpressing miR-126. The iPS-miR-126-EVs were enriched in miR-126 when compared with control iPS-EVs and effectively transferred miR-126 along with other miRNAs to recipient ECs improving their functional properties essential for ischemic tissue repair, including proliferation, metabolic activity, cell survival, migration, and angiogenic potential. Injection of iPS-miR-126-EVs in vivo in a murine model of acute limb ischemia promoted angiogenesis, increased perfusion, and enhanced functional recovery. These observations corresponded with elevated expression of genes for several proangiogenic factors in ischemic tissues following iPS-miR-126-EV transplantation. These results indicate that innate pro-regenerative properties of iPS-EVs may be further enhanced by altering their molecular composition via controlled genetic modifications. Such iPS-EVs overexpressing selected microRNAs, including miR-126, may represent a novel acellular tool for therapy of ischemic tissues in vivo.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Humanos , Camundongos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Endoteliais/metabolismo , Modelos Animais de Doenças , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Isquemia/terapia , Isquemia/metabolismo
2.
Cell Commun Signal ; 22(1): 356, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982464

RESUMO

BACKGROUND: Stem cell-derived extracellular vesicles (EVs) are an emerging class of therapeutics with excellent biocompatibility, bioactivity and pro-regenerative capacity. One of the potential targets for EV-based medicines are cardiovascular diseases (CVD). In this work we used EVs derived from human induced pluripotent stem cells (hiPSCs; hiPS-EVs) cultured under different oxygen concentrations (21, 5 and 3% O2) to dissect the molecular mechanisms responsible for cardioprotection. METHODS: EVs were isolated by ultrafiltration combined with size exclusion chromatography (UF + SEC), followed by characterization by nanoparticle tracking analysis, atomic force microscopy (AFM) and Western blot methods. Liquid chromatography and tandem mass spectrometry coupled with bioinformatic analyses were used to identify differentially enriched proteins in various oxygen conditions. We directly compared the cardioprotective effects of these EVs in an oxygen-glucose deprivation/reoxygenation (OGD/R) model of cardiomyocyte (CM) injury. Using advanced molecular biology, fluorescence microscopy, atomic force spectroscopy and bioinformatics techniques, we investigated intracellular signaling pathways involved in the regulation of cell survival, apoptosis and antioxidant response. The direct effect of EVs on NRF2-regulated signaling was evaluated in CMs following NRF2 inhibition with ML385. RESULTS: We demonstrate that hiPS-EVs derived from physiological hypoxia at 5% O2 (EV-H5) exert enhanced cytoprotective function towards damaged CMs compared to EVs derived from other tested oxygen conditions (normoxia; EV-N and hypoxia 3% O2; EV-H3). This resulted from higher phosphorylation rates of Akt kinase in the recipient cells after transfer, modulation of AMPK activity and reduced apoptosis. Furthermore, we provide direct evidence for improved calcium signaling and sustained contractility in CMs treated with EV-H5 using AFM measurements. Mechanistically, our mass spectrometry and bioinformatics analyses revealed differentially enriched proteins in EV-H5 associated with the antioxidant pathway regulated by NRF2. In this regard, EV-H5 increased the nuclear translocation of NRF2 protein and enhanced its transcription in CMs upon OGD/R. In contrast, inhibition of NRF2 with ML385 abolished the protective effect of EVs on CMs. CONCLUSIONS: In this work, we demonstrate a superior cardioprotective function of EV-H5 compared to EV-N and EV-H3. Such EVs were most effective in restoring redox balance in stressed CMs, preserving their contractile function and preventing cell death. Our data support the potential use of hiPS-EVs derived from physiological hypoxia, as cell-free therapeutics with regenerative properties for the treatment of cardiac diseases.


Assuntos
Antioxidantes , Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Animais
3.
J Nanobiotechnology ; 22(1): 60, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347587

RESUMO

Mesenchymal stem cells/stromal cells (MSCs)-derived extracellular vesicles (EVs) mediate pro-regenerative effects in damaged ischemic tissues by regulating angiogenesis. MSCs-EVs modulate functions of cells including endogenous mature cells, progenitors and stem cells, resulting in restoration of blood flow. However, the mechanisms underlying such MSC-EV activity still remain poorly understood. The present study analyzes biological effects of bone marrow (BM) MSC-EVs on endothelial cells (ECs) in ischemic tissues both in in vitro and in vivo conditions and elucidates the molecular mechanisms underlying the tissue repair. MSC-EVs were isolated from murine BM-derived MSCs and their morphological, antigenic and molecular composition regarding protein and microRNA levels were evaluated to examine their properties. Global proteomic analysis demonstrated the presence in MSC-EVs of proteins regulating pro-regenerative pathways, including integrin α5 (Itgα5) and neuropilin-1 (NRP1) involved in lymphangiogenesis. MSC-EVs were also enriched in microRNAs regulating angiogenesis, TGF-ß signaling and processes guiding cellular adhesion and interactions with extracellular matrix. The functional effects of MSC-EVs on capillary ECs in vitro included the increase of capillary-like tube formation and cytoprotection under normal and inflammatory conditions by inhibiting apoptosis. Notably, MSC-EVs enhanced also capillary-like tube formation of lymphatic ECs, which may be regulated by Itgα5 and NRP1. Moreover, in a mouse model of critical hind limb ischemia, MSC-EVs increased the recovery of blood flow in ischemic muscle tissue, which was accompanied with increased vascular density in vivo. This pro-angiogenic effect was associated with an increase in nitric oxide (NO) production via endothelial NO-synthase activation in ischemic muscles. Interestingly, MSC-EVs enhanced lymphangiogenesis, which has never been reported before. The study provides evidence on pro-angiogenic and novel pro-lymphangiogenic role of MSC-EVs on ECs in ischemic tissue mediated by their protein and miRNA molecular cargos. The results highlight Itgα5 and NRP1 carried by MSC-EVs as potential therapeutic targets to boost lymphangiogenesis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neuropilina-1/metabolismo , Células Endoteliais/metabolismo , Linfangiogênese , Proteômica , Vesículas Extracelulares/metabolismo , Isquemia/metabolismo
4.
BMC Med ; 21(1): 412, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904135

RESUMO

BACKGROUND: Cardiac fibrosis is one of the top killers among fibrotic diseases and continues to be a global unaddressed health problem. The lack of effective treatment combined with the considerable socioeconomic burden highlights the urgent need for innovative therapeutic options. Here, we evaluated the anti-fibrotic properties of extracellular vesicles (EVs) derived from human induced pluripotent stem cells (hiPSCs) that were cultured under various oxygen concentrations. METHODS: EVs were isolated from three hiPSC lines cultured under normoxia (21% O2; EV-N) or reduced oxygen concentration (hypoxia): 3% O2 (EV-H3) or 5% O2 (EV-H5). The anti-fibrotic activity of EVs was tested in an in vitro model of cardiac fibrosis, followed by a detailed investigation of the underlying molecular mechanisms. Sequencing of EV miRNAs combined with bioinformatics analysis was conducted and a selected miRNA was validated using a miRNA mimic and inhibitor. Finally, EVs were tested in a mouse model of angiotensin II-induced cardiac fibrosis. RESULTS: We provide evidence that an oxygen concentration of 5% enhances the anti-fibrotic effects of hiPS-EVs. These EVs were more effective in reducing pro-fibrotic markers in activated human cardiac fibroblasts, when compared to EV-N or EV-H3. We show that EV-H5 act through the canonical TGFß/SMAD pathway, primarily via miR-302b-3p, which is the most abundant miRNA in EV-H5. Our results show that EV-H5 not only target transcripts of several profibrotic genes, including SMAD2 and TGFBR2, but also reduce the stiffness of activated fibroblasts. In a mouse model of heart fibrosis, EV-H5 outperformed EV-N in suppressing the inflammatory response in the host and by attenuating collagen deposition and reducing pro-fibrotic markers in cardiac tissue. CONCLUSIONS: In this work, we provide evidence of superior anti-fibrotic properties of EV-H5 over EV-N or EV-H3. Our study uncovers that fine regulation of oxygen concentration in the cellular environment may enhance the anti-fibrotic effects of hiPS-EVs, which has great potential to be applied for heart regeneration.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Fibrose , Hipóxia , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Oxigênio , Proteína Smad2/genética , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Biochem Genet ; 59(1): 62-82, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32767051

RESUMO

Development of efficient vectors for transfection is one of the major challenges in genetic engineering. Previous research demonstrated that cationic derivatives of polyisoprenoids (PTAI) may serve as carriers of nucleic acids. In the present study, the effectiveness of two PTAI-based formulations (PTAI-6-8 and 10-14) was investigated and compared to the commercial reagents. The purpose of applied gene therapy was to enhance the expression of vascular endothelial growth factor (VEGF-A) in the renal medulla of spontaneously hypertensive rats (SHR) and to test its potential as a novel antihypertensive intervention. In the first part of the study (in vitro), we confirmed that PTAI-based lipoplexes efficiently transfect XC rat sarcoma cells and are stable in 37 °C for 7 days. In the in vivo experiments, we administered selected lipoplexes directly to the kidneys of conscious SHR (via osmotic pumps). There were no blood pressure changes and VEGF-A level in renal medulla was significantly higher only for PTAI-10-14-based formulation. In conclusion, despite the promising results, we were not able to achieve VEGF-A expression level high enough to verify VEGF-A gene therapy usefulness in SHR. However, results of our study give important indications for the future development of PTAI-based DNA carriers and kidney-targeted gene delivery.


Assuntos
Pressão Sanguínea/genética , Terapia Genética/instrumentação , Vetores Genéticos , Hipertensão/terapia , Medula Renal/metabolismo , Poliprenois/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular Tumoral , DNA/genética , Glucose/metabolismo , Hipertensão/genética , Masculino , Osmose , Ratos , Ratos Endogâmicos SHR , Transfecção
6.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884593

RESUMO

Subepithelial fibrosis is a component of the remodeling observed in the bronchial wall of patients diagnosed with asthma. In this process, human bronchial fibroblasts (HBFs) drive the fibroblast-to-myofibroblast transition (FMT) in response to transforming growth factor-ß1 (TGF-ß1), which activates the canonical Smad-dependent signaling. However, the pleiotropic properties of TGF-ß1 also promote the activation of non-canonical signaling pathways which can affect the FMT. In this study we investigated the effect of p38 mitogen-activated protein kinase (MAPK) inhibition by SB203580 on the FMT potential of HBFs derived from asthmatic patients using immunocytofluorescence, real-time PCR and Western blotting methods. Our results demonstrate for the first time the strong effect of p38 MAPK inhibition on the TGF-ß1-induced FMT potential throughout the strong attenuation of myofibroblast-related markers: α-smooth muscle actin (α-SMA), collagen I, fibronectin and connexin 43 in HBFs. We suggest the pleiotropic mechanism of SB203580 on FMT impairment in HBF populations by the diminishing of TGF-ß/Smad signaling activation and disturbances in the actin cytoskeleton architecture along with the maturation of focal adhesion sites. These observations justify future research on the role of p38 kinase in FMT efficiency and bronchial wall remodeling in asthma.


Assuntos
Asma/tratamento farmacológico , Brônquios/efeitos dos fármacos , Diferenciação Celular , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Imidazóis/farmacologia , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Adulto , Asma/enzimologia , Asma/patologia , Brônquios/enzimologia , Células Cultivadas , Feminino , Fibroblastos/enzimologia , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais
7.
Circ Res ; 122(2): 296-309, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29118058

RESUMO

RATIONALE: Extracellular vesicles (EVs) are tiny membrane-enclosed droplets released by cells through membrane budding or exocytosis. The myocardial reparative abilities of EVs derived from induced pluripotent stem cells (iPSCs) have not been directly compared with the source iPSCs. OBJECTIVE: To examine whether iPSC-derived EVs can influence the biological functions of cardiac cells in vitro and to compare the safety and efficacy of iPSC-derived EVs (iPSC-EVs) and iPSCs for cardiac repair in vivo. METHODS AND RESULTS: Murine iPSCs were generated, and EVs isolated from culture supernatants by sequential centrifugation. Atomic force microscopy, high-resolution flow cytometry, real-time quantitative RT-PCR, and mass spectrometry were used to characterize EV morphology and contents. iPSC-EVs were enriched in miRNAs and proteins with proangiogenic and cytoprotective properties. iPSC-EVs enhanced angiogenic, migratory, and antiapoptotic properties of murine cardiac endothelial cells in vitro. To compare the cardiac reparative capacities in vivo, vehicle, iPSCs, and iPSC-EVs were injected intramyocardially at 48 hours after a reperfused myocardial infarction in mice. Compared with vehicle-injected mice, both iPSC- and iPSC-EV-treated mice exhibited improved left ventricular function at 35 d after myocardial infarction, albeit iPSC-EVs rendered greater improvement. iPSC-EV injection also resulted in reduction in left ventricular mass and superior perfusion in the infarct zone. Both iPSCs and iPSC-EVs preserved viable myocardium in the infarct zone, whereas reduction in apoptosis was significant with iPSC-EVs. iPSC injection resulted in teratoma formation, whereas iPSC-EV injection was safe. CONCLUSIONS: iPSC-derived EVs impart cytoprotective properties to cardiac cells in vitro and induce superior cardiac repair in vivo with regard to left ventricular function, vascularization, and amelioration of apoptosis and hypertrophy. Because of their acellular nature, iPSC-EVs represent a safer alternative for potential therapeutic applications in patients with ischemic myocardial damage.


Assuntos
Vesículas Extracelulares/fisiologia , Vesículas Extracelulares/transplante , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Traumatismo por Reperfusão Miocárdica/terapia , Animais , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/transplante , Resultado do Tratamento
9.
Stem Cells ; 33(9): 2748-61, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26031404

RESUMO

Microvesicles (MVs) are membrane-enclosed cytoplasmic fragments released by normal and activated cells that have been described as important mediators of cell-to-cell communication. Although the ability of human induced pluripotent stem cells (hiPSCs) to participate in tissue repair is being increasingly recognized, the use of hiPSC-derived MVs (hiPSC-MVs) in this regard remains unknown. Accordingly, we investigated the ability of hiPSC-MVs to transfer bioactive molecules including mRNA, microRNA (miRNA), and proteins to mature target cells such as cardiac mesenchymal stromal cells (cMSCs), and we next analyzed effects of hiPSC-MVs on fate and behavior of such target cells. The results show that hiPSC-MVs derived from integration-free hiPSCs cultured under serum-free and feeder-free conditions are rich in mRNA, miRNA, and proteins originated from parent cells; however, the levels of expression vary between donor cells and MVs. Importantly, we found that transfer of hiPSC components by hiPSC-MVs impacted on transcriptome and proteomic profiles of target cells as well as exerted proliferative and protective effects on cMSCs, and enhanced their cardiac and endothelial differentiation potential. hiPSC-MVs also transferred exogenous transcripts from genetically modified hiPSCs that opens new perspectives for future strategies to enhance MV content. We conclude that hiPSC-MVs are effective vehicles for transferring iPSC attributes to adult somatic cells, and hiPSC-MV-mediated horizontal transfer of RNAs and proteins to injured tissues may be used for therapeutic tissue repair. In this study, for the first time, we propose a new concept of use of hiPSCs as a source of safe acellular bioactive derivatives for tissue regeneration.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , RNA Mensageiro/metabolismo , Micropartículas Derivadas de Células/efeitos dos fármacos , Células Cultivadas , Meios de Cultura Livres de Soro/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos
10.
Acta Biochim Pol ; 71: 12993, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983797

RESUMO

Endogenous electric fields (EFs) serve as a crucial signal to guide cell movement in processes such as wound healing, embryonic development, and cancer metastasis. However, the mechanism underlying cell electrotaxis remains poorly understood. A plausible hypothesis suggests that electrophoretic or electroosmotic forces may rearrange charged components of the cell membrane, including receptors for chemoattractants which induce asymmetric signaling and directional motility. This study aimed to explore the role of Transforming Growth Factor Beta (TGFß) signaling in the electrotactic reaction of 3T3 fibroblasts. Our findings indicate that inhibiting canonical and several non-canonical signaling pathways originating from the activated TGF-ß receptor does not hinder the directed migration of 3T3 cells to the cathode. Furthermore, suppression of TGF-ß receptor expression does not eliminate the directional migration effect of 3T3 cells in the electric field. Additionally, there is no observed redistribution of the TGF-ß receptor in the electric field. However, our studies affirm the significant involvement of Phosphoinositide 3-Kinase (PI3K) in electrotaxis, suggesting that in our model, its activation is likely associated with factors independent of TGFß action.


Assuntos
Movimento Celular , Fibroblastos , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Fibroblastos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células 3T3
11.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119647, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38092134

RESUMO

The molecular mechanisms behind electrotaxis remain largely unknown, with no identified primary direct current electric field (dcEF) sensor. Two leading hypotheses propose mechanisms involving the redistribution of charged components in the cell membrane (driven by electrophoresis or electroosmosis) and the asymmetric activation of ion channels. To investigate these mechanisms, we studied the dynamics of electrotactic behaviour of mouse 3T3 fibroblasts. We observed that 3T3 fibroblasts exhibit cathodal migration within just 1 min when exposed to physiological dcEF. This rapid response suggests the involvement of ion channels in the cell membrane. Our large-scale screening method identified several ion channel genes as potential key players, including the inwardly rectifying potassium channel Kir4.2. Blocking the Kir channel family with Ba2+ or silencing the Kcnj15 gene, encoding Kir4.2, significantly reduced the directional migration of 3T3 cells. Additionally, the levels of the intracellular regulators of Kir channels, spermine (SPM) and spermidine (SPD), had a significant impact on cell directionality. Interestingly, inhibiting Kir4.2 resulted in the temporary cessation of electrotaxis for approximately 1-2 h before its return. This observation suggests a two-phase mechanism for the electrotaxis of mouse 3T3 fibroblasts, where ion channel activation triggers the initial rapid response to dcEF, and the subsequent redistribution of membrane receptors sustains long-term directional movement. In summary, our study unveils the involvement of Kir channels and proposes a biphasic mechanism to explain the electrotactic behaviour of mouse 3T3 fibroblasts, shedding light on the molecular underpinnings of electrotaxis.


Assuntos
Fibroblastos , Espermidina , Camundongos , Animais , Movimento Celular/genética , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Espermidina/metabolismo , Canais Iônicos/metabolismo
12.
J Extracell Biol ; 3(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38405579

RESUMO

The 'QuantitatEVs: multiscale analyses, from bulk to single vesicle' workshop aimed to discuss quantitative strategies and harmonized wet and computational approaches toward the comprehensive analysis of extracellular vesicles (EVs) from bulk to single vesicle analyses with a special focus on emerging technologies. The workshop covered the key issues in the quantitative analysis of different EV-associated molecular components and EV biophysical features, which are considered the core of EV-associated biomarker discovery and validation for their clinical translation. The in-person-only workshop was held in Trento, Italy, from January 31st to February 2nd, 2023, and continued in Milan on February 3rd with "Next Generation EVs", a satellite event dedicated to early career researchers (ECR). This report summarizes the main topics and outcomes of the workshop.

13.
Stem Cell Rev Rep ; 19(8): 2756-2773, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37700183

RESUMO

RATIONALE: Emerging evidence indicates that stem cell (SC)- derived extracellular vesicles (EVs) carrying bioactive miRNAs are able to repair damaged or infarcted myocardium and ameliorate adverse remodeling. Fibroblasts represent a major cell population responsible for scar formation in the damaged heart. However, the effects of EVs on cardiac fibroblast (CFs) biology and function has not been investigated. OBJECTIVE: To analyze the biological impact of stem cell-derived EVs (SC-EVs) enriched in miR-1 and miR-199a on CFs and to elucidate the underlying molecular mechanisms. METHODS AND RESULTS: Genetically engineered human induced pluripotent stem cells (hiPS) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) expressing miR-1 or miR-199a were used to produce miR-EVs. Cells and EVs were thoughtfully analyzed for miRNA expression using RT-qPCR method. Both hiPS-miRs-EVs and UC-MSC-miRs-EVs effectively transferred miRNAs to recipient CFs, however, hiPS-miRs-EVs triggered cardiomyogenic gene expression in CFs more efficiently than UC-MSC-miRs-EVs. Importantly, hiPS-miR-1-EVs exhibited cytoprotective effects on CFs by reducing apoptosis, decreasing levels of pro-inflammatory cytokines (CCL2, IL-1ß, IL-8) and downregulating the expression of a pro-fibrotic gene - α-smooth muscle actin (α-SMA). Notably, we identified a novel role of miR-199a-3p delivered by hiPS-EVs to CFs, in triggering the expression of cardiomyogenic genes (NKX2.5, TNTC, MEF2C) and ion channels involved in cardiomyocyte contractility (HCN2, SCN5A, KCNJ2, KCND3). By targeting SERPINE2, miR-199a-3p may reduce pro-fibrotic properties of CFs, whereas miR-199a-5p targeted BCAM and TSPAN6, which may be implicated in downregulation of inflammation. CONCLUSIONS: hiPS-EVs carrying miR-1 and miR-199a attenuate apoptosis and pro-fibrotic and pro-inflammatory activities of CFs, and increase cardiomyogenic gene expression. These finding serve as rationale for targeting fibroblasts with novel EV-based miRNA therapies to improve heart repair after myocardial injury.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Humanos , Serpina E2 , MicroRNAs/genética , Anti-Inflamatórios , Vesículas Extracelulares/genética , Fibroblastos , Tetraspaninas
14.
Methods ; 53(4): 339-46, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21185378

RESUMO

Zinc-finger nucleases (ZFNs) are designer nucleases capable of cleaving a prespecified target DNA within complex genomes. ZFNs consist of a non-specific endonuclease domain fused to an engineered DNA-binding domain that tethers the nuclease activity to the chosen chromosomal site. The endonuclease-induced DNA double strand break triggers a cellular DNA damage response, resulting in double strand break repair by either accurate homologous recombination (HR) or error-prone non-homologous end-joining (NHEJ). Thus, ZFNs are powerful tools for targeted genome engineering in a variety of mammalian cell types, including embryonic (ESCs) and induced pluripotent stem cells (iPSCs). As a paradigm for genome editing in pluripotent stem cells, we describe the use of ZFNs in murine ESCs for generating knockout alleles by NHEJ without selection or by HR employing different selection schemes.


Assuntos
Desoxirribonucleases/genética , Células-Tronco Embrionárias/fisiologia , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Genoma , Dedos de Zinco/genética , Animais , Técnicas de Cultura de Células , Células Cultivadas , Meios de Cultura , Reparo do DNA , Desoxirribonucleases/metabolismo , Células-Tronco Embrionárias/citologia , Ensaios Enzimáticos , Deleção de Genes , Engenharia Genética/métodos , Genótipo , Camundongos , Transfecção/métodos
15.
J Pers Med ; 11(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575682

RESUMO

Human-induced pluripotent stem cells (hiPSCs) offer numerous possibilities in science and medicine, particularly when combined with precise genome editing methods. hiPSCs are artificially generated equivalents of human embryonic stem cells (hESCs), which possess an unlimited ability to self-renew and the potential to differentiate into any cell type of the human body. Importantly, generating patient-specific hiPSCs enables personalized drug testing or autologous cell therapy upon differentiation into a desired cell line. However, to ensure the highest standard of hiPSC-based biomedical products, their safety and reliability need to be proved. One of the key factors influencing human pluripotent stem cell (hPSC) characteristics and function is oxygen concentration in their microenvironment. In recent years, emerging data have pointed toward the beneficial effect of low oxygen pressure (hypoxia) on both hiPSCs and hESCs. In this review, we examine the state-of-the-art research on the oxygen impact on hiPSC functions and activity with an emphasis on their niche, metabolic state, reprogramming efficiency, and differentiation potential. We also discuss the similarities and differences between PSCs and cancer stem cells (CSCs) with respect to the role of oxygen in both cell types.

16.
Leukemia ; 35(10): 2964-2977, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34140648

RESUMO

Cord blood (CB) represents a source of hematopoietic stem and progenitor cells (CB-HSPCs) for bone marrow (BM) reconstitution, but clinical CB application is limited in adult patients due to the insufficient number of CB-HSCPCs and the lack of effective ex vivo approaches to increase CB-HSPC functionality. Since human-induced pluripotent stem cells (hiPSCs) have been indicated as donor cells for bioactive extracellular vesicles (EVs) modulating properties of other cells, we are the first to employ hiPSC-derived EVs (hiPSC-EVs) to enhance the hematopoietic potential of CB-derived CD45dimLin-CD34+ cell fraction enriched in CB-HSPCs. We demonstrated that hiPSC-EVs improved functional properties of CB-HSPCs critical for their hematopoietic capacity including metabolic, hematopoietic and clonogenic potential as well as survival, chemotactic response to stromal cell-derived factor 1 and adhesion to the model components of hematopoietic niche in vitro. Moreover, hiPSC-EVs enhanced homing and engraftment of CB-HSPCs in vivo. This phenomenon might be related to activation of signaling pathways in CB-HSPCs following hiPSC-EV treatment, as shown on both gene expression and the protein kinases activity levels. In conclusion, hiPSC-EVs might be used as ex vivo modulators of CB-HSPCs capacity to enhance their functional properties and augment future practical applications of CB-derived cells in BM reconstitution.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Vesículas Extracelulares/transplante , Sangue Fetal/citologia , Hematopoese , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Antígenos CD34/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
17.
Bioengineering (Basel) ; 7(3)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630660

RESUMO

Fibrosis of burn-related wounds remains an unresolved clinical issue that leads to patient disability. The aim of this study was to assess the efficacy of the transplantation of adipose-derived stromal cells seeded onto a collagen-based matrix in the reconstruction of burn-related scars. Here, we characterized an in vitro interaction between adipose-derived stromal cells and a collagen-based matrix, Integra®DRT. Our results show that transcription of pro-angiogenic, remodeling, and immunomodulatory factors was more significant in adipose-derived stromal cells than in fibroblasts. Transcription of metalloproteinases 2 and 9 is positively correlated with the collagenolytic activity of the adipose-derived stromal cells seeded onto Integra®DRT. The increase in the enzymatic activity corresponds to the decrease in the elasticity of the whole construct. Finally, we validated the treatment of a post-excision wound using adipose-derived stromal cells and an Integra®DRT construct in a 25-year-old woman suffering from burn-related scars. Scarless healing was observed in the area treated by adipose-derived stromal cells and the Integra®DRT construct but not in the reference area where Integra®DRT was applied without cells. This clinical observation may be explained by in vitro findings: Enhanced transcription of the vascular endothelial growth factor as well as remodeling of the collagen-based matrix decreased mechanical stress. Our experimental treatment demonstrated that the adipose-derived stromal cells seeded onto Integra®DRT exhibit valuable properties that may improve post-excision wound healing and facilitate skin regeneration without scars.

18.
Food Res Int ; 125: 108563, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31554073

RESUMO

The properties of durian fruit at five stages of ripeness were evaluated and compared. The physicochemical parameters such as titratable acidity (TA) and total soluble solids (TSS) increased, whereas the pH slightly decreased during the ripening process. The highest contents of polyphenols, flavonoids, flavanols, tannins, vitamin C and the antioxidant capacities, measured by radical scavenging assays, were found in ripe and overripe fruits. The structural properties of extracted polyphenols were evaluated by Fourier transform infrared spectroscopy (FTIR) and fluorescence spectroscopy. The interaction of polyphenols with the main drug carrier in blood human serum albumin (HSA) showed decrease in its fluorescence intensity. The binding properties of polyphenols were in direct correlation with the antioxidant capacities of the investigated fruits. HepG2 cells evaluated cytotoxic effect and the mechanism of cell death after treatment with durian. The metabolism of carbohydrates was examined on the expression of glycolysis-related genes (hexokinase 2 (HK2); 6-phosphofructo-2-kinase 4 (PFKFB4); facilitated glucose transporter member 1 (SLC2A1 (Glut1)) and lactate dehydrogenase A and utilization of glucose in the hepatocytes with durian treatment. Durian in immature stage had stronger cytotoxic effect and weak proapoptotic potential on HepG2 cells than the mature and overripe ones. The ripe and overripe fruits increased the expression of hepatic HK2 and PFKFB4 glycolytic genes and stimulated glucose utilization in HepG2 cells. The present results indicate that durians reveal different biological activity and may provide their broad and extensive use as medicinal or functional foods.


Assuntos
Antioxidantes/metabolismo , Bombacaceae/genética , Bombacaceae/metabolismo , Frutas/metabolismo , Expressão Gênica/genética , Glicólise/genética , Apoptose/genética , Frutas/genética , Células Hep G2 , Humanos , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
19.
J Extracell Vesicles ; 7(1): 1535750, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30637094

RESUMO

The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA