Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Genome Res ; 27(8): 1395-1405, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28483779

RESUMO

LINE-1 (L1) retrotransposons are a noted source of genetic diversity and disease in mammals. To expand its genomic footprint, L1 must mobilize in cells that will contribute their genetic material to subsequent generations. Heritable L1 insertions may therefore arise in germ cells and in pluripotent embryonic cells, prior to germline specification, yet the frequency and predominant developmental timing of such events remain unclear. Here, we applied mouse retrotransposon capture sequencing (mRC-seq) and whole-genome sequencing (WGS) to pedigrees of C57BL/6J animals, and uncovered an L1 insertion rate of ≥1 event per eight births. We traced heritable L1 insertions to pluripotent embryonic cells and, strikingly, to early primordial germ cells (PGCs). New L1 insertions bore structural hallmarks of target-site primed reverse transcription (TPRT) and mobilized efficiently in a cultured cell retrotransposition assay. Together, our results highlight the rate and evolutionary impact of heritable L1 retrotransposition and reveal retrotransposition-mediated genomic diversification as a fundamental property of pluripotent embryonic cells in vivo.


Assuntos
Embrião de Mamíferos/metabolismo , Elementos Nucleotídeos Longos e Dispersos , Animais , Embrião de Mamíferos/citologia , Feminino , Genômica/métodos , Células Germinativas , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mosaicismo , Sequenciamento Completo do Genoma/métodos
2.
Development ; 141(3): 661-73, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24449842

RESUMO

The proper functioning of the dopaminergic system requires the coordinated formation of projections extending from dopaminergic neurons in the substantia nigra (SN), ventral tegmental area (VTA) and retrorubral field to a wide array of forebrain targets including the striatum, nucleus accumbens and prefrontal cortex. The mechanisms controlling the assembly of these distinct dopaminergic cell clusters are not well understood. Here, we have investigated in detail the migratory behavior of dopaminergic neurons giving rise to either the SN or the medial VTA using genetic inducible fate mapping, ultramicroscopy, time-lapse imaging, slice culture and analysis of mouse mutants. We demonstrate that neurons destined for the SN migrate first radially and then tangentially, whereas neurons destined for the medial VTA undergo primarily radial migration. We show that tangentially migrating dopaminergic neurons express the components of the reelin signaling pathway, whereas dopaminergic neurons in their initial, radial migration phase express CXC chemokine receptor 4 (CXCR4), the receptor for the chemokine CXC motif ligand 12 (CXCL12). Perturbation of reelin signaling interferes with the speed and orientation of tangentially, but not radially, migrating dopaminergic neurons and results in severe defects in the formation of the SN. By contrast, CXCR4/CXCL12 signaling modulates the initial migration of dopaminergic neurons. With this study, we provide the first molecular and functional characterization of the distinct migratory pathways taken by dopaminergic neurons destined for SN and VTA, and uncover mechanisms that regulate different migratory behaviors of dopaminergic neurons.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Movimento Celular , Quimiocina CXCL12/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Animais , Linhagem da Célula , Desenvolvimento Embrionário , Ligantes , Camundongos , Camundongos Knockout , Modelos Biológicos , Receptores CXCR4/metabolismo , Proteína Reelina , Transdução de Sinais , Substância Negra/citologia , Imagem com Lapso de Tempo , Área Tegmentar Ventral/citologia
3.
J Vis Exp ; (59): e3350, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22314556

RESUMO

The mouse is an excellent model organism to study mammalian brain development due to the abundance of molecular and genetic data. However, the developing mouse brain is not suitable for easy manipulation and imaging in vivo since the mouse embryo is inaccessible and opaque. Organotypic slice cultures of embryonic brains are therefore widely used to study murine brain development in vitro. Ex-vivo manipulation or the use of transgenic mice allows the modification of gene expression so that subpopulations of neuronal or glial cells can be labeled with fluorescent proteins. The behavior of labeled cells can then be observed using time-lapse imaging. Time-lapse imaging has been particularly successful for studying cell behaviors that underlie the development of the cerebral cortex at late embryonic stages (1-2). Embryonic organotypic slice culture systems in brain regions outside of the forebrain are less well established. Therefore, the wealth of time-lapse imaging data describing neuronal cell migration is restricted to the forebrain (3,4). It is still not known, whether the principles discovered for the dorsal brain hold true for ventral brain areas. In the ventral brain, neurons are organized in neuronal clusters rather than layers and they often have to undergo complicated migratory trajectories to reach their final position. The ventral midbrain is not only a good model system for ventral brain development, but also contains neuronal populations such as dopaminergic neurons that are relevant in disease processes. While the function and degeneration of dopaminergic neurons has been investigated in great detail in the adult and ageing brain, little is known about the behavior of these neurons during their differentiation and migration phase (5). We describe here the generation of slice cultures from the embryonic day (E) 12.5 mouse ventral midbrain. These slice cultures are potentially suitable for monitoring dopaminergic neuron development over several days in vitro. We highlight the critical steps in generating brain slices at these early stages of embryonic development and discuss the conditions necessary for maintaining normal development of dopaminergic neurons in vitro. We also present results from time lapse imaging experiments. In these experiments, ventral midbrain precursors (including dopaminergic precursors) and their descendants were labeled in a mosaic manner using a Cre/loxP based inducible fate mapping system (6).


Assuntos
Neurônios Dopaminérgicos/citologia , Mesencéfalo/citologia , Mesencéfalo/embriologia , Técnicas de Cultura de Órgãos/métodos , Animais , Embrião de Mamíferos , Feminino , Camundongos , Microtomia/métodos , Gravidez , Células-Tronco/citologia
4.
Toxicon ; 57(7-8): 1023-32, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21549142

RESUMO

The mycotoxin deoxynivalenol (DON), a contaminant of certain foods and feeds, is cytotoxic and genotoxic to mammalians cells. Exposure of human embryonic kidney (Hek-293) cells to DON led to a dose- and time-dependent decrease in cell viability, with an IC(50) about 7.6 µM. The DON effects on Hek-293 morphology, reactive oxygen species, lipid peroxidation and antioxidative system and caspase 3 and bcl-2 expression were studied. Cells became round and in some are progressive loss of cell attachment appeared. These biochemical parameters were assessed after 6, 12 and 24 h of treatment with 2.5 and 5 µM DON. An increase in superoxide dismutase activity within the interval 6-12 h and almost complete recovery by the end of experiment for both concentrations was observed, whereas the profile of catalase activity was the same with the superoxide dismutase one for 2.5 µM and decreased in a time-dependent manner for 5 µM. A temporary activation of glutathione peroxidase and glutathione reductase was recorded at 12 h post-exposure, while the glutathione-S-transferase activity was unchanged for both concentrations. The NADP(+)-dependent isocitrate dehydrogenase activity showed a transient increase at the 12 h post-exposure. The caspase 3 expression remained unchanged and the bcl-2 one decreased after 24 h of exposure for the two concentrations. Our results showed the dose- and time specific changes in the antioxidants system of Hek-293 cells, which could not counteract efficiently the effects DON exposure. The different types of cell death which could be activated by this DON induced changes are mentioned.


Assuntos
Antioxidantes/metabolismo , Micotoxinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Tricotecenos/toxicidade , Caspase 3/metabolismo , Morte Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA