RESUMO
Organoid cultures derived from colorectal cancer (CRC) samples are increasingly used as preclinical models for studying tumor biology and the effects of targeted therapies under conditions capturing in vitro the genetic make-up of heterogeneous and even individual neoplasms. While 3D cultures are initiated from surgical specimens comprising multiple cell populations, the impact of tumor heterogeneity on drug effects in organoid cultures has not been addressed systematically. Here we have used a cohort of well-characterized CRC organoids to study the influence of tumor heterogeneity on the activity of the KRAS/MAPK-signaling pathway and the consequences of treatment by inhibitors targeting EGFR and downstream effectors. MAPK signaling, analyzed by targeted proteomics, shows unexpected heterogeneity irrespective of RAS mutations and is associated with variable responses to EGFR inhibition. In addition, we obtained evidence for intratumoral heterogeneity in drug response among parallel "sibling" 3D cultures established from a single KRAS-mutant CRC. Our results imply that separate testing of drug effects in multiple subpopulations may help to elucidate molecular correlates of tumor heterogeneity and to improve therapy response prediction in patients.
Assuntos
Técnicas de Cultura de Células/métodos , Neoplasias Colorretais/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Neoplasias Colorretais/fisiopatologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Genes erbB-1 , Humanos , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Mutação , Organoides/metabolismo , Organoides/fisiologia , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Transdução de Sinais , Proteínas ras/genéticaRESUMO
Skin, as the largest organ, has long been subject of excellent and pioneering studies on stem cells and their role in tissue regulation and tumor formation. In particular, intensive research on mouse skin, and here especially the hair follicle, has largely extended our knowledge. Surprisingly, human skin, although the most easily accessible tissue in man, is far less conceived with regard to its stem cells and their specific environment (the niche). In consequence, these features are as yet only insufficiently defined and it still has to be elucidated how insights in cutaneous stem cell biology gained in mice can be extrapolated to humans. In the last few years, human model systems such as humanized mice or in vitro organotypic cultures that support maintenance or reconstruction of human skin and long-term epidermal regeneration have been developed. These models allow lineage tracing experiments and can be modified by adopting genetically manipulated cell types. Accordingly, they represent proper tools for human stem cell research and will clearly help to improve our still incomplete understanding. Like normal skin, the non-melanoma skin cancers and their respective tumors have gained considerable interest in basic as well as in clinical research. Being the most frequent human tumors globally, basal cell carcinomas and cutaneous squamous cell carcinomas (SCCs) continue to increase in incidence and specifically SCCs predominate in immunosuppressed transplant recipients. This review intends to compile the present knowledge on keratinocyte stem cells and their niches in normal skin and skin carcinomas with a special focus on the human situation. In particular, the role of the microenvironment, the niche, is emphasized, promoting our view of the decisive importance of the niche as a key regulatory element for controlling position, fate and regenerative potential of the stem cell population both in healthy skin and in carcinomas.
Assuntos
Transformação Celular Neoplásica , Células Epidérmicas , Células-Tronco/citologia , Animais , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/patologia , Humanos , Camundongos , Neoplasias Cutâneas/patologia , Microambiente TumoralRESUMO
Immune therapies have had limited efficacy in high-grade serous ovarian cancer (HGSC), as the cellular targets and mechanism(s) of action of these agents in HGSC are unknown. Here we performed immune functional and single-cell RNA sequencing transcriptional profiling on novel HGSC organoid/immune cell co-cultures treated with a unique bispecific anti-programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) antibody compared with monospecific anti-PD-1 or anti-PD-L1 controls. Comparing the functions of these agents across all immune cell types in real time identified key immune checkpoint blockade (ICB) targets that have eluded currently available monospecific therapies. The bispecific antibody induced superior cellular state changes in both T and natural killer (NK) cells. It uniquely induced NK cells to transition from inert to more active and cytotoxic phenotypes, implicating NK cells as a key missing component of the current ICB-induced immune response in HGSC. It also induced a subset of CD8 T cells to transition from naïve to more active and cytotoxic progenitor-exhausted phenotypes post-treatment, revealing the small, previously uncharacterized population of CD8 T cells responding to ICB in HGSC. These state changes were driven partially through bispecific antibody-induced downregulation of the bromodomain-containing protein BRD1. Small-molecule inhibition of BRD1 induced similar state changes in vitro and demonstrated efficacy in vivo, validating the co-culture results. Our results demonstrate that state changes in both NK and a subset of T cells may be critical in inducing an effective anti-tumor immune response and suggest that immune therapies able to induce such cellular state changes, such as BRD1 inhibitors, may have increased efficacy in HGSC. SIGNIFICANCE: This study indicates that increased efficacy of immune therapies in ovarian cancer is driven by state changes of NK and small subsets of CD8 T cells into active and cytotoxic states.
Assuntos
Antígeno B7-H1/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Cistadenocarcinoma Seroso/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Cistadenocarcinoma Seroso/imunologia , Cistadenocarcinoma Seroso/patologia , Feminino , Humanos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Gradação de Tumores , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Aberrant activation of mitogenic signaling pathways in cancer promotes growth and proliferation of cells by activating mTOR and S6 phosphorylation, and D-cyclin kinases and Rb phosphorylation, respectively. Correspondingly, inhibition of phosphorylation of both Rb and S6 is required for robust anti-tumor efficacy of drugs that inhibit cell signaling. The best-established mechanism of mTOR activation in cancer is via PI3K/Akt signaling, but mTOR activity can also be stimulated by CDK4 and PIM kinases. In this study, we show that the CDK4/6 inhibitor abemaciclib inhibits PIM kinase and S6 phosphorylation in cancer cells and concurrent inhibition of PIM, CDK4, and CDK6 suppresses both S6 and Rb phosphorylation. TSC2 or PIK3CA mutations obviate the requirement for PIM kinase and circumvent the inhibition of S6 phosphorylation by abemaciclib. Combination with a PI3K inhibitor restored suppression of S6 phosphorylation and synergized to curtail cell growth. By combining abemaciclib with a PI3K inhibitor, three pathways (Akt, PIM, and CDK4) to mTOR activation are neutralized, suggesting a potential combination strategy for the treatment of PIK3CA-mutant ER+ breast cancer.
RESUMO
The combined influence of oncogenic drivers, genomic instability, and/or DNA damage repair deficiencies increases replication stress in cancer. Cells with high replication stress rely on the upregulation of checkpoints like those governed by CHK1 for survival. Previous studies of the CHK1 inhibitor prexasertib demonstrated activity across multiple cancer types. Therefore, we sought to (1) identify markers of prexasertib sensitivity and (2) define the molecular mechanism(s) of intrinsic and acquired resistance using preclinical models representing multiple tumor types. Our findings indicate that while cyclin E dysregulation is a driving mechanism of prexasertib response, biomarkers associated with this aberration lack sufficient predictive power to render them clinically actionable for patient selection. Transcriptome analysis of a pan-cancer cell line panel and in vivo models revealed an association between expression of E2F target genes and prexasertib sensitivity and identified innate immunity genes associated with prexasertib resistance. Functional RNAi studies supported a causal role of replication fork components as modulators of prexasertib response. Mechanisms that protect cells from oncogene-induced replication stress may safeguard tumors from such stress induced by a CHK1 inhibitor, resulting in acquired drug resistance. Furthermore, resistance to prexasertib may be shaped by innate immunity.
RESUMO
Stem cells in human interfollicular epidermis are still difficult to identify, mainly because of a lack of definitive markers and the inability to label human beings for label-retaining cells (LRCs). Here, we report that LRCs could be identified and localized in organotypic cultures (OTCs) made with human cells. Labeling cultures for 2 weeks with iododeoxyuridine (IdU) and then chasing for 6-10 weeks left <1% of basal cells retaining IdU label. Whole mounts demonstrated that LRCs were individually dispersed in the epidermal basal layer. Some LRCs, but not all, colocalized with cells expressing melanoma chondroitin sulfate proteoglycan, a putative stem cell marker. Although we found LRCs in both collagen- and scaffold-based OTCs, only the scaffold-OTCs supported long-term survival and regeneration. LRCs ' short survival in collagen-OTCs was not due to loss of appropriate growth factors from fibroblasts. Instead, it was due to expression of metalloproteinases, especially matrix metalloproteinase (MMP)-2 and MMP-14, which caused collagen fragmentation, matrix degradation, and dislocation of specific basement membrane components bound to epidermal integrins. Blocking MMP activation not only abrogated MMP-dependent matrix degradation but also increased longevity of the epidermis and the LRCs in these cultures. Such findings indicate that the stem cell niche, the microenvironment surrounding and influencing the stem cell, is essential for stem cell survival and function, including long-term tissue regeneration. Disclosure of potential conflicts of interest is found at the end of this article.
Assuntos
Técnicas de Cultura de Células/métodos , Células Epidérmicas , Nicho de Células-Tronco/citologia , Células-Tronco/citologia , Animais , Atrofia , Biomarcadores/metabolismo , Bromodesoxiuridina/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/farmacologia , Epiderme/efeitos dos fármacos , Epiderme/enzimologia , Epiderme/patologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Idoxuridina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaloproteinases da Matriz/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Regeneração/efeitos dos fármacos , Coloração e Rotulagem , Nicho de Células-Tronco/efeitos dos fármacos , Nicho de Células-Tronco/enzimologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia , Fatores de Tempo , Alicerces TeciduaisRESUMO
Although Aurora A, B, and C kinases share high sequence similarity, especially within the kinase domain, they function distinctly in cell-cycle progression. Aurora A depletion primarily leads to mitotic spindle formation defects and consequently prometaphase arrest, whereas Aurora B/C inactivation primarily induces polyploidy from cytokinesis failure. Aurora B/C inactivation phenotypes are also epistatic to those of Aurora A, such that the concomitant inactivation of Aurora A and B, or all Aurora isoforms by nonisoform-selective Aurora inhibitors, demonstrates the Aurora B/C-dominant cytokinesis failure and polyploidy phenotypes. Several Aurora inhibitors are in clinical trials for T/B-cell lymphoma, multiple myeloma, leukemia, lung, and breast cancers. Here, we describe an Aurora A-selective inhibitor, LY3295668, which potently inhibits Aurora autophosphorylation and its kinase activity in vitro and in vivo, persistently arrests cancer cells in mitosis, and induces more profound apoptosis than Aurora B or Aurora A/B dual inhibitors without Aurora B inhibition-associated cytokinesis failure and aneuploidy. LY3295668 inhibits the growth of a broad panel of cancer cell lines, including small-cell lung and breast cancer cells. It demonstrates significant efficacy in small-cell lung cancer xenograft and patient-derived tumor preclinical models as a single agent and in combination with standard-of-care agents. LY3295668, as a highly Aurora A-selective inhibitor, may represent a preferred approach to the current pan-Aurora inhibitors as a cancer therapeutic agent.
Assuntos
Antineoplásicos/uso terapêutico , Aurora Quinase A/antagonistas & inibidores , Mitose/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Células HeLa , Humanos , MasculinoRESUMO
In vitro generated skin models find growing interest as promising tools in basic research and clinical application in regenerative medicine. Here, we present further details of an improved long-term skin equivalent (SE) enabling mechanistic studies on skin reconstruction and epidermal function. Growth conditions of fibroblasts in a 3D scaffold were analysed to optimise the dermal microenvironment by providing an authentic dermal matrix for regular tissue reconstruction and function of cocultured keratinocytes. These SEs demonstrate sustained epidermal viability - over 12 weeks - with regular differentiation as substantiated by in vivo-like patterns of all differentiation products, exemplified here by the cornified envelope components loricrin and repetin. The continuous expression of all major tight junction components in the granular layer, shown here for ZO-1 in coherence with the presence of epidermal barrier lipids, and ultrastructural accumulation of lamellar bodies, collectively indicate proper epidermal barrier structures. Remarkably, cocultured keratinocytes exerted an ongoing proliferation-stimulating effect on fibroblasts colonising the scaffold comparable to a cocktail of fibroblast growth factors. Consequently, precultivation of dermal equivalents (DEs) in basal or growth factor-enriched media had only minor effects on the quality of epidermal regeneration in cocultures. As to the role of fibroblast numbers, complete absence of dermal cells resulted in atrophic epithelia but the effect of cell numbers as low as 5 x 10(4)cells/cm(2) on epidermal tissue quality equalled that of the standard density (2 x 10(5)cells/cm(2)). Surprisingly, precultivation of fibroblasts in the DEs for 7 days (standard) showed no better effect on epidermal tissue reformation as compared to 2 days whereas a precultivation period of 14 days resulted in atrophic epidermal and dermal tissue development. These data demonstrate, (i) the strict dependence of epidermal tissue regeneration on the presence of fibroblasts, (ii) the mutual keratinocyte-fibroblast interactions for cell proliferation and organogenesis, and (iii) the importance of the proper microenvironment for epidermal tissue function and supposedly for establishment of a stem cell niche in vitro.
Assuntos
Epiderme/fisiologia , Fibroblastos/citologia , Regeneração , Pele Artificial , Membrana Basal/citologia , Membrana Basal/ultraestrutura , Contagem de Células , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Derme/citologia , Células Epidérmicas , Epiderme/ultraestrutura , Células Epiteliais/citologia , Fibroblastos/ultraestrutura , Humanos , Fatores de TempoRESUMO
Abemaciclib is an ATP-competitive, reversible kinase inhibitor selective for CDK4 and CDK6 that has shown antitumor activity as a single agent in hormone receptor positive (HR+) metastatic breast cancer in clinical trials. Here, we examined the mechanistic effects of abemaciclib treatment using in vitro and in vivo breast cancer models. Treatment of estrogen receptor positive (ER+) breast cancer cells with abemaciclib alone led to a decrease in phosphorylation of Rb, arrest at G1, and a decrease in cell proliferation. Moreover, abemaciclib exposure led to durable inhibition of pRb, TopoIIα expression and DNA synthesis, which were maintained after drug removal. Treatment of ER+ breast cancer cells also led to a senescence response as indicated by accumulation of ß-galactosidase, formation of senescence-associated heterochromatin foci, and a decrease in FOXM1 positive cells. Continuous exposure to abemaciclib altered breast cancer cell metabolism and induced apoptosis. In a xenograft model of ER+ breast cancer, abemaciclib monotherapy caused regression of tumor growth. Overall these data indicate that abemaciclib is a CDK4 and CDK6 inhibitor that, as a single agent, blocks breast cancer cell progression, and upon longer treatment can lead to sustained antitumor effects through the induction of senescence, apoptosis, and alteration of cellular metabolism.
RESUMO
Most cancers preserve functional retinoblastoma (Rb) and may, therefore, respond to inhibition of D-cyclin-dependent Rb kinases, CDK4 and CDK6. To date, CDK4/6 inhibitors have shown promising clinical activity in breast cancer and lymphomas, but it is not clear which additional Rb-positive cancers might benefit from these agents. No systematic survey to compare relative sensitivities across tumor types and define molecular determinants of response has been described. We report a subset of cancers highly sensitive to CDK4/6 inhibition and characterized by various genomic aberrations known to elevate D-cyclin levels and describe a recurrent CCND1 3'UTR mutation associated with increased expression in endometrial cancer. The results suggest multiple additional classes of cancer that may benefit from CDK4/6-inhibiting drugs such as abemaciclib.
Assuntos
Aminopiridinas/farmacologia , Benzimidazóis/farmacologia , Ciclina D/metabolismo , Neoplasias/genética , Animais , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Ensaios Clínicos Fase I como Assunto , Ciclina D/genética , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I-IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling >4,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab.
Assuntos
Biomarcadores Tumorais/genética , Cetuximab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Pessoa de Meia-Idade , Adulto JovemRESUMO
The application of patient-derived three-dimensional culture systems as disease-specific drug sensitivity models has enormous potential to connect compound screening and clinical trials. However, the implementation of complex cell-based assay systems in drug discovery requires reliable and robust screening platforms. Here we describe the establishment of an automated platform in 384-well format for three-dimensional organoid cultures derived from colon cancer patients. Single cells were embedded in an extracellular matrix by an automated workflow and subsequently self-organized into organoid structures within 4 days of culture before being exposed to compound treatment. We performed validation of assay robustness and reproducibility via plate uniformity and replicate-experiment studies. After assay optimization, the patient-derived organoid platform passed all relevant validation criteria. In addition, we introduced a streamlined plate uniformity study to evaluate patient-derived colon cancer samples from different donors. Our results demonstrate the feasibility of using patient-derived tumor samples for high-throughput assays and their integration as disease-specific models in drug discovery.
Assuntos
Antineoplásicos/isolamento & purificação , Técnicas de Cultura de Células/métodos , Ensaios de Triagem em Larga Escala/métodos , Organoides/crescimento & desenvolvimento , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Organoides/patologia , Esferoides Celulares/efeitos dos fármacosRESUMO
Besides medical application as composite skin grafts, in vitro constructed skin equivalents (SEs) or organotypic co-cultures represent valuable tools for cutaneous biology. Major drawbacks of conventional models, employing collagen hydrogels as dermal equivalents (DEs), are a rather poor stability and limited life span, restricting studies to early phases of skin regeneration. Here we present an improved stabilised in vitro model actually providing the basis for skin-like homeostasis. Keratinocytes were grown on dermal equivalents (DEs) reinforced by modified hyaluronic acid fibres (Hyalograft-3D) and colonised with skin fibroblasts, producing genuine dermis-type matrix. These SEs developed a superior epidermal architecture with regular differentiation and ultrastructure, which occurred also faster than in SEs based on collagen-DEs. Critical aspects of differentiation, still unbalanced in early stages, were perfectly re-normalised, most strikingly the co-expression of keratins K1/K10 and downregulation of regeneration-associated keratins such as K16. The restriction of integrin and K15 distribution as well as keratinocyte proliferation to the basal layer underlined the restored tissue polarity, while the drop of growth rates towards physiological levels implied finally accomplishment of homeostasis. This correlated to faster basement membrane (BM) formation and ultrastructurally defined dermo-epidermal junction including abundant anchoring fibrils for strong tissue connection. Whereas the fibroblasts in the scaffold initially secreted a typical provisional regenerative matrix (fibronectin, tenascin), with time collagens of mature dermis (type I and III) were accumulating giving rise to an in vivo-like matrix with regularly organised bundles of striated collagen fibrils. In contrast to the more catabolic state in conventional DEs, the de novo reconstruction of genuine dermal tissue seemed to be a key element for maintaining prolonged normal keratinocyte proliferation (followed up to 8 wks), fulfilling the criteria of tissue-homeostasis, and possibly providing a stem cell niche.
Assuntos
Derme/fisiologia , Epiderme/crescimento & desenvolvimento , Proteínas da Matriz Extracelular/biossíntese , Fibroblastos/fisiologia , Morfogênese/fisiologia , Engenharia Tecidual/métodos , Membrana Basal/metabolismo , Membrana Basal/ultraestrutura , Diferenciação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Células Epidérmicas , Epiderme/ultraestrutura , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Humanos , Integrinas/metabolismo , Técnicas de Cultura de ÓrgãosRESUMO
The mechanism by which transforming growth factor-ß (TGFß) regulates differentiation in human epidermal keratinocytes is still poorly understood. To assess the role of Smad signaling, we engineered human HaCaT keratinocytes either expressing small interfering RNA against Smads2, 3, and 4 or overexpressing Smad7 and verified impaired Smad signaling as decreased Smad phosphorylation, aberrant nuclear translocation, and altered target gene expression. Besides abrogation of TGFß-dependent growth inhibition in conventional cultures, epidermal morphogenesis and differentiation in organotypic cultures were disturbed, resulting in altered tissue homeostasis with suprabasal proliferation and hyperplasia upon TGFß treatment. Neutralizing antibodies against TGFß, similar to blocking the actions of EGF-receptor or keratinocyte growth factor, caused significant growth reduction of Smad7-overexpressing cells, thereby demonstrating that epithelial hyperplasia was attributed to TGFß-induced "dermis"-derived growth promoting factors. Furthermore impaired Smad signaling not only blocked the epidermal differentiation process or caused epidermal-to-mesenchymal transition but induced a switch to a complex alternative differentiation program, best characterized as mucous/intestinal-type epithelial differentiation. As the same alternative phenotype evolved from both modes of Smad-pathway interference, and reduction of Smad7-overexpression caused reversion to epidermal differentiation, our data suggest that functional TGFß/Smad signaling, besides regulating epidermal tissue homeostasis, is not only essential for terminal epidermal differentiation but crucial in programming different epithelial differentiation routes.
Assuntos
Diferenciação Celular/fisiologia , Queratinócitos/fisiologia , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Células Epidérmicas , Epiderme/fisiologia , Homeostase , Humanos , Queratinócitos/citologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Smad/genéticaRESUMO
Epidermal homeostasis is understood as the maintenance of epidermal tissue structure and function by a fine tuned regulatory mechanism balancing proliferation and cell loss by desquamation and apoptosis. The lack of appropriate experimental models has largely prevented a better understanding of the regulatory mechanisms controlling epidermal tissue homeostasis in human skin. Keratinocyte culture studies had revealed a strict dependency of regular epidermal differentiation on dermal interactions only accomplishable in three-dimensional skin models. As major drawbacks, conventional models, employing collagen hydrogels as dermal equivalents (DEs) exhibit a rather poor stability and limited lifespan. Here, we present an improved stabilized in vitro-model for long-term growth and differentiation of keratinocytes providing the basis for tissue homeostasis. Keratinocytes were grown on DEs reinforced by modified hyaluronic acid fibers (Hyalograft-3D) and colonized with skin fibroblasts, producing genuine dermis-type matrix. These skin equivalents (SEs) develop superior epidermal architecture with regular differentiation and ultrastructure. Critical aspects of differentiation, still unbalanced in early stages, are renormalized, most strikingly the coexpression of keratins K1/K10, downregulation of regeneration-associated keratins (K16), and restriction of K15 to the basal layer. The strict localization of integrins to basal cells underlining restored tissue polarity, the drop of keratinocyte growth rates towards physiological levels and the rapid formation of a mature basement membrane with abundant anchoring fibrils are altogether features fulfilling the criteria of tissue homeostasis. Therefore, these scaffold-based SEs not only allow for studying homeostasis control but also for the first time provide proper experimental conditions for establishing a stem cell niche in vitro.