Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Parasitol ; 209: 107825, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31877275

RESUMO

Ciliate ectoparasites are one of the most important groups of pathogens in fish culture, and the traditional treatments are sometimes harmful to the fish and the environment. Thus, the search for novel compounds that are effective at low concentrations and safe for fish are necessary to optimise treatments in aquaculture. The antiprotozoal capacity of silver nanoparticles (AgNPs) against the ciliate Tetrahymena has been documented; however, their toxicity may vary with the synthesis methodology and nanoparticle size. The objectives of this study were a) to evaluate the acute toxicity in vitro of two AgNPs (Argovit™ and UTSA) on Tetrahymena sp., a biological model for ciliated ectoparasites of fish and b) to test the safety of lethal and higher doses of UTSA AgNPs for ciliates on the fish C. estor. Light microscopy and scanning electron microscopy (SEM) were used to determine whether AgNPs affected the structure of the cell surface of Tetrahymena. The mortality, histopathological alterations and metagenomics of the fish were used to determine the major effects of UTSA AgNPs. In Tetrahymena, the median lethal concentration (LC50) for Argovit™ was 2501 ± 1717 ng/L at 15 min and 796 ± 510 ng/L at 60 min, while the LC50 for UTSA AgNPs was 4 ± 2 and 1 ± 0.6 ng/L at 15 min and 60 min, respectively. A concentration of 3300 ng/L Argovit™ and 10.6 ng/L UTSA AgNPs for 15 and 60 min, respectively, was 100% effective against Tetrahymena. After 60 min of exposure to 0.25 and 0.50 ng/L UTSA AgNPs, the number of cilia significantly reduced, there were small holes on the cell surface, and the cellular membrane was ruptured. In fish exposed to lethal (10.6 ng/L) and higher (31.8 and 95.4 ng/L) doses of UTSA, the AgNPs did not affect fish survival after 96 h, and there were no signs of histopathological damage or gut microbial changes. This study is the first report on microscopic and ultrastructural changes in Tetrahymena after exposure to significantly low concentrations of UTSA AgNPs with antiprotozoal efficacy without evidence of harmful effects on fish. These results provide the basis for further studies of both pet aquarium and commercial fish that may validate these findings at a larger experimental scale, taking into account AgNPs bioaccumulation, safety for human consumption and environmental impact.


Assuntos
Ectoparasitoses/veterinária , Doenças dos Peixes/tratamento farmacológico , Nanopartículas Metálicas/toxicidade , Prata/farmacologia , Tetrahymena/efeitos dos fármacos , Animais , Aquicultura , Ectoparasitoses/tratamento farmacológico , Ectoparasitoses/parasitologia , Doenças dos Peixes/parasitologia , Peixes , Água Doce , Microbioma Gastrointestinal , Humanos , Dose Letal Mediana , Metagenômica , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura/veterinária , Prata/química , Prata/toxicidade , Tetrahymena/ultraestrutura
2.
J Nanosci Nanotechnol ; 11(6): 5476-82, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21770207

RESUMO

Supporting silver and gold on mordenites by ion-exchange method with further reduction with H2 leads to formation of neutral and charged metal clusters inside zeolite channels as well as metal nanoparticles on external surface of mordenite. A portion of the cluster states of the metals and stability of the clusters depend strongly on acidity of zeolite (determined by SiO2/Al2O3 molar ratio) and nature of zeolite cation (H+, Na+, NH4+). The investigations of silver and gold samples after prolonged storage for 6 and 12 months revealed that silver clusters are comparatively stable while oxidation of gold clusters and nanoparticles by air is the probable cause of deactivation of gold catalysts. The comparison of the results for Au and Ag samples allow suggesting NaM15 and NaM24 mordenites for effective synthesis of complex Au-Ag clusters as active and stable species of catalytic reactions occurring at room temperature.

3.
J Nanosci Nanotechnol ; 11(6): 5469-75, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21770206

RESUMO

Gold species deposited on NH4(+)- and H(+)-mordenites were studied by X-ray diffraction, xenon adsorption, NMR of 27Al and 129Xe, UV-Visible spectroscopy and TPR. Mordenite ion-exchange cations exert a significant effect on size distribution and electronic state of gold species supported on the zeolites. AuNH4M contains larger nanoparticles of gold on its external surface than AuHM because protonic form of zeolite has stronger sites for stabilization of gold nanospecies. In the case of NH4(+)-mordenite, Au clusters inside zeolite channels have bigger size and fill the side-pockets completely after gold deposition due to more complete reduction of gold entities, while in H(+)-mordenite only half the side-pockets are filled by gold species. H(+)-mordenite favors the stabilization of both small gold clusters and cations. Even after the reduction of gold by hydrogen flow at 100 degrees C, some gold species are not completely reduced and have certain effective charge (Au(n)delta+ clusters).

4.
PLoS One ; 14(11): e0224904, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31703098

RESUMO

The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics; therefore, it is critical to develop novel antibiotic agents and treatments to control bacterial infections. An alternative to this worldwide problem is the use of nanomaterials with antimicrobial properties. Silver nanoparticles (AgNPs) have been extensively studied due to their antimicrobial effect in different organisms. In this work, the synergistic antimicrobial effect of AgNPs and conventional antibiotics was assessed in Gram-positive and Gram-negative bacteria. AgNPs minimal inhibitory concentration was 10-12 µg mL-1 in all bacterial strains tested, regardless of their different susceptibility against antibiotics. Interestingly, a synergistic antimicrobial effect was observed when combining AgNPs and kanamycin according to the fractional inhibitory concentration index, FICI: <0.5), an additive effect by combining AgNPs and chloramphenicol (FICI: 0.5 to 1), whereas no effect was found with AgNPs and ß-lactam antibiotics combinations. Flow cytometry and TEM analysis showed that sublethal concentrations of AgNPs (6-7 µg mL-1) altered the bacterial membrane potential and caused ultrastructural damage, increasing the cell membrane permeability. No chemical interactions between AgNPs and antibiotics were detected. We propose an experimental supported mechanism of action by which combinatorial effect of antimicrobials drives synergy depending on their specific target, facilitated by membrane alterations generated by AgNPs. Our results provide a deeper understanding about the synergistic mechanism of AgNPs and antibiotics, aiming to combat antimicrobial infections efficiently, especially those by multi-drug resistant microorganisms, in order to mitigate the current crisis due to antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Nanopartículas Metálicas , Prata , Antibacterianos/administração & dosagem , Anti-Infecciosos/farmacologia , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular , Resistência Microbiana a Medicamentos , Potenciais da Membrana/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Prata/química
5.
J Nanosci Nanotechnol ; 7(6): 1882-6, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17654959

RESUMO

Gold catalysts modified by Fe and Ni and supported on different zeolite matrixes have been studied by TEM, TPR, and catalytic testing. The presence of a metal oxide additive allows stabilizing small gold particles, particularly in the case of Fe. The shape of light-off curves shows two temperature regions of the catalyst activity, a low-temperature range below 250 degrees C and a high-temperature range above 300 degrees C. This situation is explained considering the existence of at least two types of catalytically active sites of gold assigned to gold clusters and gold nanoparticles, respectively, while the ionic state of gold (Au3+) remains inactive. It is shown that interaction of gold with Fe promoter leads to activation of catalysts at low temperature due to a change of electronic state and redox properties of gold. NiO additive cause a similar, but less pronounced effect.


Assuntos
Dióxido de Carbono/química , Cristalização/métodos , Ouro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Zeolitas/química , Catálise , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
6.
Hum Exp Toxicol ; 36(9): 931-948, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27815378

RESUMO

The wide application of silver nanoparticles (AgNPs) has pointed out the need to evaluate their potential risk and toxic effects on human health. Herein, the cytotoxic effects of Argovit™ AgNPs were evaluated on eight cancer cell lines. Further cytotoxic studies were performed in gynecological cancer cell lines from cervical (HeLa) and breast (MDA-MB-231 and MCF7) cancer. In both cases, the half maximal inhibitory concentration (IC50) of AgNPs produced the formation of reactive oxygen species (ROS) after 24 h of incubation, but it was not statistically significant compared with untreated cells. However, HeLa, MDA-MB-231, and MCF7 cells treated with the maximal IC of AgNPs induced the formation of ROS either at 12 or 24 h of incubation. Genotoxicity achieved by comet assay in HeLa, MDA-MB-231, and MCF7 cells revealed that exposure to IC50 of AgNPs does not induced noticeable DNA damage in the cells. However, the IC of AgNPs provoked severe DNA damage after 12 and 24 h of exposure. We conclude that, Argovit (polyvinylpyrrolidone-coated AgNPs) induce a cytotoxic effect in a time and dose-dependent manner in all the eight cancer cell lines tested. Nevertheless, the genotoxic effect is mainly restricted by the concentration effect. The results contribute to explore new therapeutic applications of AgNPs for malignances in murine models and to study in deep the cytotoxic and genotoxic effects of AgNPs in healthy cells at the surrounding tissue of the neoplasia.


Assuntos
Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Apoptose/efeitos dos fármacos , Neoplasias da Mama , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA , Relação Dose-Resposta a Droga , Feminino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias do Colo do Útero
7.
Cytogenet Genome Res ; 96(1-4): 154-60, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12438792

RESUMO

Organization of B chromosomes in the Korean field mouse Apodemus peninsulae was analyzed. We painted its metaphase chromosomes with whole and partial chromosome paints generated by microdissection and DOP-PCR. The results of the painting indicated that all B chromosomes contained a large amount of repeated DNA sequences. The repeats could be classified in terms of their homology and predominant location. Pericentromeric repeats of B chromosomes were present in many copies in pericentromeric C-blocks of all autosomes and in non-centromeric C-blocks of the sex chromosomes. B arm specific type 1 repeats comprised the main body of the arms of almost all B chromosomes and were present in the arms of A chromosomes as interspersed sequences. B arm-specific type 2 repeats were found at the ends of some B chromosomes that did not undergo compaction at the interphase- metaphase transition and remained uncondensed. On the basis of comparative analysis of localization of B chromosome repeats in the chromosomes of two related species, A. peninsulae and A. agrarius, we suggest a hypothesis of B chromosome origin and evolution in the genus Apodemus.


Assuntos
Mapeamento Cromossômico , Muridae/genética , Animais , Coloração Cromossômica/métodos , Cromossomos/genética , Dissecação/métodos , Feminino , Hibridização in Situ Fluorescente , Cariotipagem , Coreia (Geográfico) , Masculino , Metáfase , Reação em Cadeia da Polimerase/métodos , Cromossomo X/genética , Cromossomo Y/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA