Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nucleic Acids Res ; 48(21): 12252-12268, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33231687

RESUMO

The biogenesis of eukaryotic RNA polymerases is poorly understood. The present study used a combination of genetic and molecular approaches to explore the assembly of RNA polymerase III (Pol III) in yeast. We identified a regulatory link between Rbs1, a Pol III assembly factor, and Rpb10, a small subunit that is common to three RNA polymerases. Overexpression of Rbs1 increased the abundance of both RPB10 mRNA and the Rpb10 protein, which correlated with suppression of Pol III assembly defects. Rbs1 is a poly(A)mRNA-binding protein and mutational analysis identified R3H domain to be required for mRNA interactions and genetic enhancement of Pol III biogenesis. Rbs1 also binds to Upf1 protein, a key component in nonsense-mediated mRNA decay (NMD) and levels of RPB10 mRNA were increased in a upf1Δ strain. Genome-wide RNA binding by Rbs1 was characterized by UV cross-linking based approach. We demonstrated that Rbs1 directly binds to the 3' untranslated regions (3'UTRs) of many mRNAs including transcripts encoding Pol III subunits, Rpb10 and Rpc19. We propose that Rbs1 functions by opposing mRNA degradation, at least in part mediated by NMD pathway. Orthologues of Rbs1 protein are present in other eukaryotes, including humans, suggesting that this is a conserved regulatory mechanism.


Assuntos
Regulação Fúngica da Expressão Gênica , Genoma Fúngico , RNA Helicases/genética , RNA Polimerase III/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Regiões 3' não Traduzidas , Sequência de Aminoácidos , Sequência Conservada , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , Ligação Proteica/efeitos da radiação , RNA Helicases/metabolismo , RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Raios Ultravioleta
2.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298922

RESUMO

The coordinated transcription of the genome is the fundamental mechanism in molecular biology. Transcription in eukaryotes is carried out by three main RNA polymerases: Pol I, II, and III. One basic problem is how a decrease in tRNA levels, by downregulating Pol III efficiency, influences the expression pattern of protein-coding genes. The purpose of this study was to determine the mRNA levels in the yeast mutant rpc128-1007 and its overdose suppressors, RBS1 and PRT1. The rpc128-1007 mutant prevents assembly of the Pol III complex and functionally mimics similar mutations in human Pol III, which cause hypomyelinating leukodystrophies. We applied RNAseq followed by the hierarchical clustering of our complete RNA-seq transcriptome and functional analysis of genes from the clusters. mRNA upregulation in rpc128-1007 cells was generally stronger than downregulation. The observed induction of mRNA expression was mostly indirect and resulted from the derepression of general transcription factor Gcn4, differently modulated by suppressor genes. rpc128-1007 mutation, regardless of the presence of suppressors, also resulted in a weak increase in the expression of ribosome biogenesis genes. mRNA genes that were downregulated by the reduction of Pol III assembly comprise the proteasome complex. In summary, our results provide the regulatory links affected by Pol III assembly that contribute differently to cellular fitness.


Assuntos
RNA Polimerase III/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , RNA Polimerases Dirigidas por DNA/genética , Regulação para Baixo/genética , Regulação Fúngica da Expressão Gênica/genética , Humanos , RNA Polimerase II/genética , RNA de Transferência/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Ativação Transcricional/genética , Transcriptoma/genética , Regulação para Cima/genética
3.
Nucleic Acids Res ; 46(18): 9444-9455, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30053100

RESUMO

Transcription of transfer RNA genes by RNA polymerase III (Pol III) is controlled by general factors, TFIIIB and TFIIIC, and a negative regulator, Maf1. Here we report the interplay between TFIIIC and Maf1 in controlling Pol III activity upon the physiological switch of yeast from fermentation to respiration. TFIIIC directly competes with Pol III for chromatin occupancy as demonstrated by inversely correlated tDNA binding. The association of TFIIIC with tDNA was stronger under unfavorable respiratory conditions and in the presence of Maf1. Induction of tDNA transcription by glucose-activated protein kinase A (PKA) was correlated with the down-regulation of TFIIIC occupancy on tDNA. The conditions that activate the PKA signaling pathway promoted the binding of TFIIIB subunits, Brf1 and Bdp1, with tDNA, but decreased their interaction with TFIIIC. Association of Brf1 and Bdp1 with TFIIIC was much stronger under repressive conditions, potentially restricting TFIIIB recruitment to tDNA and preventing Pol III recruitment. Altogether, we propose a model in which, depending on growth conditions, TFIIIC promotes activation or repression of tDNA transcription.


Assuntos
RNA de Transferência/genética , Fatores de Transcrição TFIII/fisiologia , Transcrição Gênica , Respiração Celular/genética , Fermentação/genética , Regulação Fúngica da Expressão Gênica , Inativação Gênica , RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
4.
Genome Res ; 26(7): 933-44, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27206856

RESUMO

RNA polymerase III (RNAPIII) synthesizes a range of highly abundant small stable RNAs, principally pre-tRNAs. Here we report the genome-wide analysis of nascent transcripts attached to RNAPIII under permissive and restrictive growth conditions. This revealed strikingly uneven polymerase distributions across transcription units, generally with a predominant 5' peak. This peak was higher for more heavily transcribed genes, suggesting that initiation site clearance is rate-limiting during RNAPIII transcription. Down-regulation of RNAPIII transcription under stress conditions was found to be uneven; a subset of tRNA genes showed low response to nutrient shift or loss of the major transcription regulator Maf1, suggesting potential "housekeeping" roles. Many tRNA genes were found to generate long, 3'-extended forms due to read-through of the canonical poly(U) terminators. The degree of read-through was anti-correlated with the density of U-residues in the nascent tRNA, and multiple, functional terminators can be located far downstream. The steady-state levels of 3'-extended pre-tRNA transcripts are low, apparently due to targeting by the nuclear surveillance machinery, especially the RNA binding protein Nab2, cofactors for the nuclear exosome, and the 5'-exonuclease Rat1.


Assuntos
RNA Polimerase III/fisiologia , RNA de Transferência/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Análise de Sequência de RNA , Regiões Terminadoras Genéticas , Transcrição Gênica
5.
RNA ; 22(3): 339-49, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26729922

RESUMO

tRNA is essential for translation and decoding of the proteome. The yeast proteome responds to stress and tRNA biosynthesis contributes in this response by repression of tRNA transcription and alterations of tRNA modification. Here we report that the stress response also involves processing of pre-tRNA 3' termini. By a combination of Northern analyses and RNA sequencing, we show that upon shift to elevated temperatures and/or to glycerol-containing medium, aberrant pre-tRNAs accumulate in yeast cells. For pre-tRNAUAU(Ile) and pre-tRNAUUU Lys) these aberrant forms are unprocessed at the 5' ends, but they possess extended 3' termini. Sequencing analyses showed that partial 3' processing precedes 5' processing for pre-tRNAUAU(Ile). An aberrant pre-tRNA(Tyr) that accumulates also possesses extended 3' termini, but it is processed at the 5' terminus. Similar forms of these aberrant pre-tRNAs are detected in the rex1Δ strain that is defective in 3' exonucleolytic trimming of pre-tRNAs but are absent in the lhp1Δ mutant lacking 3' end protection. We further show direct correlation between the inhibition of 3' end processing rate and the stringency of growth conditions. Moreover, under stress conditions Rex1 nuclease seems to be limiting for 3' end processing, by decreased availability linked to increased protection by Lhp1. Thus, our data document complex 3' processing that is inhibited by stress in a tRNA-type and condition-specific manner. This stress-responsive tRNA 3' end maturation process presumably contributes to fine-tune the levels of functional tRNA in budding yeast in response to environmental conditions.


Assuntos
Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , RNA Fúngico/genética , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Precursores de RNA/química , RNA Fúngico/química , RNA de Transferência/química
6.
Trends Biochem Sci ; 36(9): 451-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21816617

RESUMO

The synthesis of tRNA by yeast RNA polymerase III (Pol III) is regulated in response to changing environmental conditions. This control is mediated by Maf1, the global negative regulator of Pol III transcription conserved from yeast to humans. Details regarding the molecular basis of Pol III repression by Maf1 are now emerging from recently reported structural and biochemical data on Pol III and Maf1. Efficient Pol III transcription, following the shift of cells from a non-fermentable carbon source to glucose, requires phosphorylation of Maf1. One of the newly identified Maf1 kinases is the chromatin-bound casein kinase II (CK2). Current studies have allowed us to propose an innovative mechanism of Pol III regulation. We suggest that CK2-mediated phosphorylation of Maf1, occurring directly on tDNA chromatin, controls Pol III recycling.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , RNA Polimerase III/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/enzimologia , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Cromatina/genética , Cromatina/metabolismo , Repressão Enzimática , Fosforilação , Regiões Promotoras Genéticas , RNA Polimerase III/biossíntese , RNA Polimerase III/genética , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
7.
Biochim Biophys Acta ; 1843(6): 1103-10, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24576411

RESUMO

Yeast Fba1 (fructose 1,6-bisphosphate aldolase) is a glycolytic enzyme essential for viability. The overproduction of Fba1 enables overcoming of a severe growth defect caused by a missense mutation rpc128-1007 in a gene encoding the C128 protein, the second largest subunit of the RNA polymerase III complex. The suppression of the growth phenotype by Fba1 is accompanied by enhanced de novo tRNA transcription in rpc128-1007 cells. We inactivated residues critical for the catalytic activity of Fba1. Overproduction of inactive aldolase still suppressed the rpc128-1007 phenotype, indicating that the function of this glycolytic enzyme in RNA polymerase III transcription is independent of its catalytic activity. Yeast Fba1 was determined to interact with the RNA polymerase III complex by coimmunoprecipitation. Additionally, a role of aldolase in control of tRNA transcription was confirmed by ChIP experiments. The results indicate a novel direct relationship between RNA polymerase III transcription and aldolase.


Assuntos
Frutose-Bifosfato Aldolase/metabolismo , RNA Polimerase III/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , Northern Blotting , Western Blotting , Núcleo Celular/metabolismo , Cromatina/genética , Imunoprecipitação da Cromatina , Citoplasma/metabolismo , Imunofluorescência , Frutose-Bifosfato Aldolase/genética , Imunoprecipitação , Mutagênese Sítio-Dirigida , Mutação/genética , RNA Polimerase III/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
8.
Biochim Biophys Acta ; 1829(3-4): 376-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23201230

RESUMO

tRNA synthesis by yeast RNA polymerase III (Pol III) is down-regulated under growth-limiting conditions. This control is mediated by Maf1, a global negative regulator of Pol III transcription. Conserved from yeast to man, Maf1 was originally discovered in Saccharomyces cerevisiae by a genetic approach. Details regarding the molecular basis of Pol III repression by Maf1 are now emerging from the recently reported structural and biochemical data on Pol III and Maf1. The phosphorylation status of Maf1 determines its nuclear localization and interaction with the Pol III complex and several Maf1 kinases have been identified to be involved in Pol III control. Moreover, Maf1 indirectly affects tRNA maturation and decay. Here I discuss the current understanding of the mechanisms that oversee the Maf1-mediated regulation of Pol III activity and the role of Maf1 in the control of tRNA biosynthesis in yeast. This article is part of a Special Issue entitled: Transcription by Odd Pols.


Assuntos
RNA Polimerase III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Estabilidade de RNA , RNA de Transferência/biossíntese , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
9.
RNA ; 18(10): 1823-32, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22919049

RESUMO

tRNA precursors, which are transcribed by RNA polymerase III, undergo end-maturation, splicing, and base modifications. Hypomodified tRNAs, such as tRNA(Val(AAC)), lacking 7-methylguanosine and 5-methylcytidine modifications, are subject to degradation by a rapid tRNA decay pathway. Here we searched for genes which, when overexpressed, restored stability of tRNA(Val(AAC)) molecules in a modification-deficient trm4Δtrm8Δ mutant. We identified TEF1 and VAS1, encoding elongation factor eEF1A and valyl-tRNA synthetase respectively, which likely protect hypomodified tRNA(Val(AAC)) by direct interactions. We also identified MAF1 whose product is a general negative regulator of RNA polymerase III. Expression of a Maf1-7A mutant that constitutively repressed RNA polymerase III transcription resulted in increased stability of hypomodified tRNA(Val(AAC)). Strikingly, inhibition of tRNA transcription in a Maf1-independent manner, either by point mutation in RNA polymerase III subunit Rpc128 or decreased expression of Rpc17 subunit, also suppressed the turnover of the hypomodified tRNA(Val(AAC)). These results support a model where inhibition of tRNA transcription leads to stabilization of hypomodified tRNA(Val(AAC)) due to more efficient protection by tRNA-interacting proteins.


Assuntos
RNA Polimerase III/antagonistas & inibidores , Estabilidade de RNA/genética , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica , Regulação para Baixo/genética , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Proteínas Mutantes/fisiologia , Organismos Geneticamente Modificados , Plasmídeos/genética , RNA Polimerase III/metabolismo , RNA Polimerase III/fisiologia , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Transfecção
10.
Proc Natl Acad Sci U S A ; 108(12): 4926-31, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21383183

RESUMO

Maf1 protein is a global negative regulator of RNA polymerase (Pol) III transcription conserved from yeast to man. We report that phosphorylation of Maf1 by casein kinase II (CK2), a highly evolutionarily conserved eukaryotic kinase, is required for efficient Pol III transcription. Both recombinant human and yeast CK2 were able to phosphorylate purified human or yeast Maf1, indicating that Maf1 can be a direct substrate of CK2. Upon transfer of Saccharomyces cerevisiae from repressive to favorable growth conditions, CK2 activity is required for the release of Maf1 from Pol III bound to a tRNA gene and for subsequent activation of tRNA transcription. In a yeast strain lacking Maf1, CK2 inhibition showed no effect on tRNA synthesis, confirming that CK2 activates Pol III via Maf1. Additionally, CK2 was found to associate with tRNA genes, and this association is enhanced in absence of Maf1, especially under repressive conditions. These results corroborate the previously reported TFIIIB-CK2 interaction and indicate an important role of CK2-mediated Maf1 phosphorylation in triggering Pol III activation.


Assuntos
Caseína Quinase II/metabolismo , RNA Polimerase III/metabolismo , RNA de Transferência/biossíntese , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Caseína Quinase II/genética , Ativação Enzimática , Humanos , Fosforilação , RNA Polimerase III/genética , RNA de Transferência/genética , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo , Fatores de Transcrição/genética
12.
J Biol Chem ; 286(45): 39478-88, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21940626

RESUMO

Maf1 is negative regulator of RNA polymerase III in yeast. We observed high levels of both primary transcript and end-matured, intron-containing pre-tRNAs in the maf1Δ strain. This pre-tRNA accumulation could be overcome by transcription inhibition, arguing against a direct role of Maf1 in tRNA maturation and suggesting saturation of processing machinery by the increased amounts of primary transcripts. Saturation of the tRNA exportin, Los1, is one reason why end-matured intron-containing pre-tRNAs accumulate in maf1Δ cells. However, it is likely possible that other components of the processing pathway are also limiting when tRNA transcription is increased. According to our model, Maf1-mediated transcription control and nuclear export by Los1 are two major stages of tRNA biosynthesis that are regulated by environmental conditions in a coordinated manner.


Assuntos
Núcleo Celular/metabolismo , Modelos Biológicos , RNA Polimerase III/metabolismo , Precursores de RNA/biossíntese , Processamento Pós-Transcricional do RNA/fisiologia , RNA Fúngico/biossíntese , RNA de Transferência/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/genética , Deleção de Genes , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , RNA Polimerase III/genética , Precursores de RNA/genética , RNA Fúngico/genética , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
13.
Gene ; 824: 146394, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35278633

RESUMO

Detailed knowledge of structures of yeast RNA polymerases (RNAPs) contrasts with the limited information that is available on the control of their assembly. RNAP enzymes are large heteromeric complexes that function in the nucleus, but they are assembled in the cytoplasm and imported to the nucleus with help from specific auxiliary factors. Here, I review a recent study that suggests that the formation of an early-stage assembly intermediate of the RNAP III complex occurs through a co-translational mechanism. According to our hypothesis, RNAP III assembly might be seeded while the Rpb10 subunit of the enzyme core is being synthesized by cytoplasmic ribosome machinery. The co-translational assembly of RNAP III is mediated by Rbs1 protein which binds to 3'-untranslated regions in mRNA in a way that depends on the R3H domain in the Rbs1 sequence.


Assuntos
RNA Polimerase III , Proteínas de Saccharomyces cerevisiae , Regiões 3' não Traduzidas , Núcleo Celular/genética , Núcleo Celular/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Gene ; 809: 146034, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34688816

RESUMO

We previously reported the function of Rbs1 protein in RNA polymerase III complex assembly via interactions with both, proteins and mRNAs. Rbs1 is a poly(A)-binding protein. The R3H domain in Rbs1 is required for mRNA interactions. The present study utilized the results of a genome-wide analysis of RNA binding by Rbs1 to show a direct interaction between Rbs1 with the 5'-untranslated region (5'-UTR) in PCL5 mRNA. By examining Pcl5 protein levels, we found that Rbs1 overproduction inhibited the translation of PCL5 mRNA. Pcl5 is a cyclin that is associated with Pho85 kinase, which is involved in the degradation of Gcn4 transcription factor. Consequently, lower levels of Pcl5 that resulted from Rbs1 overproduction increased the Gcn4 response. The functional R3H domain in Rbs1 was required for the downregulation of Pcl5 translation and increase in the Gcn4 response, thus validating a regulatory mechanism that relies on the interaction between Rbs1 and the 5'-UTR in PCL5 mRNA. Rbs1 protein was further characterized by microscopy, which identified single Rbs1 assemblies in part of the cell population. The presence of Rbs1 aggregates was confirmed by the fractionation of cellular extracts. Altogether, our results suggest a more general role of Rbs1 in regulating cellular metabolism beyond the assembly of RNA polymerase III.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Regiões 5' não Traduzidas , Fatores de Transcrição de Zíper de Leucina Básica/genética , Ciclinas/genética , Ciclinas/metabolismo , Regulação Fúngica da Expressão Gênica , Complexos Multiproteicos/metabolismo , Agregados Proteicos/genética , RNA Polimerase III/metabolismo , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
J Biol Chem ; 285(46): 35719-27, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20817737

RESUMO

Maf1, first identified in yeast Saccharomyces cerevisiae, is a general negative regulator of RNA polymerase III (Pol III). Transcription regulation by Maf1 is important under stress conditions and during the switch between fermentation and respiration. Maf1 is composed of two domains conserved during evolution. We report here that these two domains of human Maf1 are resistant to mild proteolysis and interact together as shown by pull-down and size-exclusion chromatography and that the comparable domains of yeast Maf1 interact in a two-hybrid assay. Additionally, in yeast, a mutation in the N-terminal domain is compensated by mutations in the C-terminal domain. Integrity of both domains and their direct interaction are necessary for Maf1 dephosphorylation and subsequent inhibition of Pol III transcription on a nonfermentable carbon source. These data relate Pol III transcription inhibition to Maf1 structural changes.


Assuntos
Regulação da Expressão Gênica , RNA Polimerase III/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Northern Blotting , Células Cultivadas , Cromatografia em Gel , Humanos , Immunoblotting , Dados de Sequência Molecular , Mutação , Fosforilação , Ligação Proteica , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
16.
Front Mol Biosci ; 8: 680090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055890

RESUMO

RNA polymerase I (RNAPI) and RNAPIII are multi-heterogenic protein complexes that specialize in the transcription of highly abundant non-coding RNAs, such as ribosomal RNA (rRNA) and transfer RNA (tRNA). In terms of subunit number and structure, RNAPI and RNAPIII are more complex than RNAPII that synthesizes thousands of different mRNAs. Specific subunits of the yeast RNAPI and RNAPIII form associated subcomplexes that are related to parts of the RNAPII initiation factors. Prior to their delivery to the nucleus where they function, RNAP complexes are assembled at least partially in the cytoplasm. Yeast RNAPI and RNAPIII share heterodimer Rpc40-Rpc19, a functional equivalent to the αα homodimer which initiates assembly of prokaryotic RNAP. In the process of yeast RNAPI and RNAPIII biogenesis, Rpc40 and Rpc19 form the assembly platform together with two small, bona fide eukaryotic subunits, Rpb10 and Rpb12. We propose that this assembly platform is co-translationally seeded while the Rpb10 subunit is synthesized by cytoplasmic ribosome machinery. The translation of Rpb10 is stimulated by Rbs1 protein, which binds to the 3'-untranslated region of RPB10 mRNA and hypothetically brings together Rpc19 and Rpc40 subunits to form the αα-like heterodimer. We suggest that such a co-translational mechanism is involved in the assembly of RNAPI and RNAPIII complexes.

17.
Biochim Biophys Acta ; 1793(11): 1703-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19695293

RESUMO

We report proteomic analyses that establish the effect of cytoplasmic prion [PSI(+)] on the protein complement of yeast mitochondria. A set of 44 yeast mitochondrial proteins whose levels were affected by [PSI(+)] was identified by two methods of gel-free and label-free differential proteomics. From this set we focused on prohibitins, Phb1 and Phb2, and the mitochondrially synthesized Cox2 subunit of cytochrome oxidase. By immunoblotting we confirmed the decreased level of Cox2 and reduced mitochondrial localization of the prohibitins in [PSI(+)] cells, which both became partially restored by [PSI(+)] curing. The presence of the [PSI(+)] prion also caused premature fragmentation of mitochondria, a phenomenon linked to prohibitin depletion in mammalian cells. By fractionation of cellular extracts we demonstrated a [PSI(+)]-dependent increase of the proportion of prohibitins in the high molecular weight fraction of aggregated proteins. We propose that the presence of the yeast prion causes newly synthesized prohibitins to aggregate in the cytosol, and therefore reduces their levels in mitochondria, which in turn reduces the stability of Cox2 and possibly of other proteins, not investigated here in detail.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Mitocondriais/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Estabilidade Enzimática/fisiologia , Proteínas Mitocondriais/genética , Fatores de Terminação de Peptídeos/genética , Proibitinas , Transporte Proteico/fisiologia , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
Mol Cell Biol ; 27(21): 7693-702, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17785443

RESUMO

RNA polymerase III (Pol III) produces essential components of the biosynthetic machinery, and therefore its activity is tightly coupled with cell growth and metabolism. In the yeast Saccharomyces cerevisiae, Maf1 is the only known global and direct Pol III transcription repressor which mediates numerous stress signals. Here we demonstrate that transcription regulation by Maf1 is not limited to stress but is important for the switch between fermentation and respiration. Under respiratory conditions, Maf1 is activated by dephosphorylation and imported into the nucleus. The transition from a nonfermentable carbon source to that of glucose induces Maf1 phosphorylation and its relocation to the cytoplasm. The absence of Maf1-mediated control of tRNA synthesis impairs cell viability in nonfermentable carbon sources. The respiratory phenotype of maf1-Delta allowed genetic suppression studies to dissect the mechanism of Maf1 action on the Pol III transcription apparatus. Moreover, in cells grown in a nonfermentable carbon source, Maf1 regulates the levels of different tRNAs to various extents. The differences in regulation may contribute to the physiological role of Maf1.


Assuntos
Carbono/metabolismo , RNA Polimerase III/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fermentação/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Glucose/farmacologia , Dados de Sequência Molecular , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Fosforilação/efeitos dos fármacos , Subunidades Proteicas/metabolismo , RNA Polimerase III/química , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Frações Subcelulares/metabolismo , Supressão Genética/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
19.
Biochim Biophys Acta Gene Regul Mech ; 1862(1): 25-34, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30342998

RESUMO

Respiratory growth and various stress conditions repress RNA polymerase III (Pol III) transcription in Saccharomyces cerevisiae. Here we report a degradation of the largest Pol III catalytic subunit, C160 as a consequence of Pol III transcription repression. We observed C160 degradation in response to transfer of yeast from fermentation to respiration conditions, as well as treatment with rapamycin or inhibition of nucleotide biosynthesis. We also detected ubiquitylated forms of C160 and demonstrated that C160 protein degradation is dependent on proteasome activity. A comparable time-course study of Pol III repression upon metabolic shift from fermentation to respiration shows that the transcription inhibition is correlated with Pol III dissociation from chromatin but that the degradation of C160 subunit is a downstream event. Despite blocking degradation of C160 by proteasome, Pol III-transcribed genes are under proper regulation. We postulate that the degradation of C160 is activated under stress conditions to reduce the amount of existing Pol III complex and prevent its de novo assembly.


Assuntos
Subunidades Proteicas/metabolismo , RNA Polimerase III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Transcrição Gênica , Ubiquitinação
20.
Cell Cycle ; 18(4): 500-510, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30760101

RESUMO

Assembly of the RNA polymerases in both yeast and humans is proposed to occur in the cytoplasm prior to their nuclear import. Our previous studies identified a cold-sensitive mutation, rpc128-1007, in the yeast gene encoding the second largest Pol III subunit, Rpc128. rpc128-1007 is associated with defective assembly of Pol III complex and, in consequence, decreased level of tRNA synthesis. Here, we show that rpc128-1007 mutant cells remain largely unbudded and larger than wild type cells. Flow cytometry revealed that most rpc128-1007 mutant cells have G1 DNA content, suggesting that this mutation causes pronounced cell cycle delay in the G1 phase. Increased expression of gene encoding Rbs1, the Pol III assembly/import factor, could counteract G1 arrest observed in the rpc128-1007 mutant and restore wild type morphology of mutant cells. Concomitantly, cells lacking Rbs1 show a mild delay in G1 phase exit, indicating that Rbs1 is required for timely cell cycle progression. Using the double rpc128-1007 maf1Δ mutant in which tRNA synthesis is recovered, we confirmed that the Pol III assembly defect associated with rpc128-1007 is a primary cause of cell cycle arrest. Together our results indicate that impairment of Pol III complex assembly is coupled to cell cycle inhibition in the G1 phase.


Assuntos
Fase G1 , RNA Polimerase III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citoplasma/metabolismo , Regulação Fúngica da Expressão Gênica , Mutação , RNA Polimerase III/genética , RNA de Transferência/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA