RESUMO
Lynch syndrome (LS) is the most common inherited cancer syndrome. It is inherited via a monoallelic germline variant in one of the DNA mismatch repair (MMR) genes. LS carriers have a broad 30% to 80% risk of developing various malignancies, and more precise, individual risk estimations would be of high clinical value, allowing tailored cancer prevention and surveillance. Due to MMR deficiency, LS cancers are characterized by the accumulation of frameshift mutations leading to highly immunogenic frameshift peptides (FSPs). Thus, immune surveillance is proposed to inhibit the outgrowth of MMR-deficient cell clones. Recent studies have shown that immunoediting during the evolution of MMR-deficient cancers leads to a counter-selection of highly immunogenic antigens. The immunogenicity of FSPs is dependent on the antigen presentation. One crucial factor determining antigen presentation is the HLA genotype. Hence, a LS carrier's HLA genotype plays an important role in the presentation of FSP antigens to the immune system, and may influence the likelihood of progression from precancerous lesions to cancer. To address the challenge of clarifying this possibility including diverse populations with different HLA types, we have established the INDICATE initiative (Individual cancer risk by HLA type, http://indicate-lynch.org/), an international network aiming at a systematic evaluation of the HLA genotype as a possible cancer risk modifier in LS. Here we summarize the current knowledge on the role of HLA type in cancer risk and outline future research directions to delineate possible association in the scenario of LS with genetically defined risk population and highly immunogenic tumors.
Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Mutação da Fase de Leitura , Reparo de Erro de Pareamento de DNARESUMO
BACKGROUND & AIMS: Owing to the high load of immunogenic frameshift neoantigens, tumors arising in individuals with Lynch syndrome (LS), the most common inherited colorectal cancer (CRC) syndrome, are characterized by a pronounced immune infiltration. However, the immune status of normal colorectal mucosa in LS is not well characterized. We assessed the immune infiltrate in tumor-distant normal colorectal mucosa from LS CRC patients, sporadic microsatellite-unstable (MSI) and microsatellite-stable (MSS) CRC patients, and cancer-free LS carriers. METHODS: CD3-positive, FOXP3-positive, and CD8-positive T cells were quantified in, respectively, 219, 233, and 201 formalin-fixed paraffin-embedded (FFPE) normal colonic mucosa tissue sections from CRC patients and cancer-free LS carriers and 26, 22, and 19 LS CRCs. CD3-positive T cells were also quantified in an independent cohort of 97 FFPE normal rectal mucosa tissue sections from LS carriers enrolled in the CAPP2 clinical trial. The expression of 770 immune-relevant genes was analyzed in a subset of samples with the use of the NanoString nCounter platform. RESULTS: LS normal mucosa specimens showed significantly elevated CD3-, FOXP3-, and CD8-positive T-cell densities compared with non-LS control specimens. Gene expression profiling and cluster analysis revealed distinct immune profiles in LS carrier mucosa with and without cancer manifestation. Long-term follow-up of LS carriers within the CAPP2 trial found a correlation between mucosal T-cell infiltrate and time to subsequent tumor occurrence. CONCLUSIONS: LS carriers show elevated mucosal T-cell infiltration even in the absence of cancer. The normal mucosa immune profile may be a temporary or permanent tumor risk modifier in LS carriers.
Assuntos
Carcinoma/imunologia , Colo/imunologia , Neoplasias Colorretais Hereditárias sem Polipose/imunologia , Mucosa Intestinal/imunologia , Reto/imunologia , Linfócitos T/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Complexo CD3/metabolismo , Linfócitos T CD8-Positivos/patologia , Carcinoma/genética , Carcinoma/patologia , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Proteínas de Ligação a DNA/genética , Feminino , Fatores de Transcrição Forkhead/metabolismo , Heterozigoto , Humanos , Mucosa Intestinal/patologia , Contagem de Linfócitos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Linfócitos T/patologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Transcriptoma , Adulto JovemRESUMO
BACKGROUND: B-cell affinity maturation in germinal center relies on regulated actin dynamics for cell migration and cell-to-cell communication. Activating mutations in the cytoskeletal regulator Wiskott-Aldrich syndrome protein (WASp) cause X-linked neutropenia (XLN) with reduced serum level of IgA. OBJECTIVE: We investigated the role of B cells in XLN pathogenesis. METHODS: We examined B cells from 6 XLN patients, 2 of whom had novel R268W and S271F mutations in WASp. By using immunized XLN mouse models that carry the corresponding patient mutations, WASp L272P or WASp I296T, we examined the B-cell response. RESULTS: XLN patients had normal naive B cells and plasmablasts, but reduced IgA+ B cells and memory B cells, and poor B-cell proliferation. On immunization, XLN mice had a 2-fold reduction in germinal center B cells in spleen, but with increased generation of plasmablasts and plasma cells. In vitro, XLN B cells showed reduced immunoglobulin class switching and aberrant cell division as well as increased production of immunoglobulin-switched plasma cells. CONCLUSIONS: Overactive WASp predisposes B cells for premature differentiation into plasma cells at the expense of cell proliferation and immunoglobulin class switching.
Assuntos
Linfócitos B , Neutropenia , Proteína da Síndrome de Wiskott-Aldrich , Animais , Linfócitos B/citologia , Divisão Celular , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Imunoglobulina A , Camundongos , Neutropenia/genética , Plasmócitos/patologia , Proteína da Síndrome de Wiskott-Aldrich/metabolismoRESUMO
Lynch syndrome (LS) is caused by a pathogenic heterozygous germline variant in one of the DNA mismatch repair (MMR) genes: MLH1, MSH2, MSH6 or PMS2. LS-associated colorectal carcinomas (CRCs) are characterized by MMR deficiency and by accumulation of multiple insertions/deletions at coding microsatellites (cMS). MMR deficiency-induced variants at defined cMS loci have a driver function and promote tumorigenesis. Notably, PMS2 variant carriers face only a slightly increased risk of developing CRC. Here, we investigate whether this lower penetrance is also reflected by differences in molecular features and cMS variant patterns. Tumor DNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue cores or sections (n = 90). Tumors originated from genetically proven germline pathogenic MMR variant carriers (including 14 PMS2-deficient tumors). The mutational spectrum was analyzed using fluorescently labeled primers specific for 18 cMS previously described as mutational targets in MMR-deficient tumors. Immune cell infiltration was analyzed by immunohistochemical detection of T-cells on FFPE tissue sections. The cMS spectrum of PMS2-deficient CRCs did not show any significant differences from MLH1/MSH2-deficient CRCs. PMS2-deficient tumors, however, displayed lower CD3-positive T-cell infiltration compared to other MMR-deficient cancers (28.00 vs. 55.00 per 0.1 mm2, p = 0.0025). Our study demonstrates that the spectrum of potentially immunogenic cMS variants in CRCs from PMS2 gene variant carriers is similar to that observed in CRCs from other MMR gene variant carriers. Lower immune cell infiltration observed in PMS2-deficient CRCs could be the result of alternative mechanisms of immune evasion or immune cell exclusion, similar to those seen in MMR-proficient tumors.
Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Idoso , Neoplasias Colorretais/complicações , Neoplasias Colorretais/patologia , Neoplasias Colorretais Hereditárias sem Polipose/complicações , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Proteínas de Ligação a DNA/genética , Feminino , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Instabilidade de Microssatélites , Repetições de Microssatélites/genética , Pessoa de Meia-Idade , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genéticaRESUMO
Genetic predisposition is one of the major measurable cancer risk factors. Affected patients have an enhanced risk for cancer and require life-long surveillance. However, current screening measures are mostly invasive and only available for certain tumor types. Particularly in hereditary cancer syndromes, liquid biopsy, in addition to monitoring therapy response and assessing minimal residual disease, holds great potential for surveillance at the precancerous stage and potentially even diagnostics. Exploring these options and future clinical translation could help reduce cancer risk and mortality in high-risk individuals and enhance patients' adherence to tailored surveillance protocols.
RESUMO
Hereditary cancer syndromes (HCS) account for 5~10% of all cancer diagnosis. Lynch syndrome (LS) is one of the most common HCS, caused by germline mutations in the DNA mismatch repair (MMR) genes. Even with prospective cancer surveillance, LS is associated with up to 50% lifetime risk of colorectal, endometrial, and other cancers. While significant progress has been made in the timely identification of germline pathogenic variant carriers and monitoring and early detection of precancerous lesions, cancer-risk reduction strategies are still centered around endoscopic or surgical removal of neoplastic lesions and susceptible organs. Safe and effective cancer prevention strategies are critically needed to improve the life quality and longevity of LS and other HCS carriers. The era of precision oncology driven by recent technological advances in tumor molecular profiling and a better understanding of genetic risk factors has transformed cancer prevention approaches for at-risk individuals, including LS carriers. MMR deficiency leads to the accumulation of insertion and deletion mutations in microsatellites (MS), which are particularly prone to DNA polymerase slippage during DNA replication. Mutations in coding MS give rise to frameshift peptides (FSP) that are recognized by the immune system as neoantigens. Due to clonal evolution, LS tumors share a set of recurrent and predictable FSP neoantigens in the same and in different LS patients. Cancer vaccines composed of commonly recurring FSP neoantigens selected through prediction algorithms have been clinically evaluated in LS carriers and proven safe and immunogenic. Preclinically analogous FSP vaccines have been shown to elicit FSP-directed immune responses and exert tumor-preventive efficacy in murine models of LS. While the immunopreventive efficacy of "off-the-shelf" vaccines consisting of commonly recurring FSP antigens is currently investigated in LS clinical trials, the feasibility and utility of personalized FSP vaccines with individual HLA-restricted epitopes are being explored for more precise targeting. Here, we discuss recent advances in precision cancer immunoprevention approaches, emerging enabling technologies, research gaps, and implementation barriers toward clinical translation of risk-tailored prevention strategies for LS carriers. We will also discuss the feasibility and practicality of next-generation cancer vaccines that are based on personalized immunogenic epitopes for precision cancer immunoprevention.
RESUMO
The human placenta comes in direct contact with maternal cells and blood at two interfaces. The syncytiotrophoblast layer is surrounded by maternal blood at the intervillous space, and extravillous trophoblasts breach the vascular endothelial cells layer upon spiral artery remodeling and invasion of decidual veins. However, little knowledge exists about EVT-derived secreted factors, which may serve as predictive markers for obstetrical syndromes or shape the local environment at the maternal-fetal interface. Here, we define secreted EVT-associated genes and describe a method that yields interstitial fluids from patient-matched first-trimester decidua basalis and parietalis tissues.
Assuntos
Líquido Extracelular , Placentação , Gravidez , Feminino , Humanos , Primeiro Trimestre da Gravidez , Decídua/metabolismo , Células Endoteliais , Trofoblastos/metabolismo , Proteínas/metabolismoRESUMO
The HLA system represents a central component of the antigen presentation machinery. As every patient possesses a defined set of HLA molecules, only certain antigens can be presented on the cell surface. Thus, studying HLA type-dependent antigen presentation can improve the understanding of variation in susceptibility to various diseases, including infectious diseases and cancer. In archival formalin-fixed paraffin-embedded (FFPE) tissue, the HLA type is difficult to analyze because of fragmentation of DNA, hindering the application of commonly used assays that rely on long DNA stretches. Addressing these difficulties, we present a refined approach for characterizing presence or absence of HLA-A*02, the most common HLA-A allele in the Caucasian population, in archival samples. We validated our genotyping strategy in a cohort of 90 samples with HLA status obtained by an NGS-based method. 90% (n = 81) of the samples could be analyzed with the approach. For all of them, the presence or absence of HLA-A*02 alleles was correctly determined with the method, demonstrating 100% sensitivity and specificity (95% CI: 91.40%-100% and 91.19%-100%). Furthermore, we provide an example of application in an independent cohort of 73 FFPE microsatellite-unstable (MSI) colorectal cancer samples. As MSI cancer cells encompass a high number of mutations in coding microsatellites, leading to the generation of highly immunogenic frameshift peptide antigens, they are ideally suited for studying relations between the mutational landscape of tumor cells and interindividual differences in the immune system, including the HLA genotype. Overall, our method can help to promote studying HLA type-dependency during the pathogenesis of a wide range of diseases, making archival and historic tissue samples accessible for identifying HLA-A*02 alleles.
Assuntos
DNA , Neoplasias , Humanos , Alelos , Antígenos HLA-A/genética , Neoplasias/diagnóstico , Neoplasias/genéticaRESUMO
Immune checkpoint blockade (ICB) shows remarkable clinical effects in patients with metastatic microsatellite-unstable (MSI) cancer. However, markers identifying potential non-responders are missing. We examined the prevalence of Beta-2-microglobulin (B2M) mutations, a common immune evasion mechanism, in stage IV MSI gastrointestinal cancer and its influence on metastatic pattern and patients' survival under ICB. Twenty-five patients with metastatic, MSI gastrointestinal adenocarcinoma were included. Eighteen patients received ICB with pembrolizumab and one patient with nivolumab/ipilimumab. Sequencing was performed to determine B2M mutation status. B2M mutations and loss of B2M expression were detected in 6 out of 25 stage IV MSI cancers. B2M mutations were strongly associated with exclusively peritoneal/peritoneal and lymph node metastases (p=0.0055). However, no significant differences in therapy response (25% vs. 46.6%, p>0.99) and survival (median PFS: 19.5 vs 33.0 months, p=0.74; median OS 39 months vs. not reached, p>0.99) were observed between B2M-mutant and B2M-wild type tumor patients. Among metastatic MSI GI cancers, B2M-mutant tumors represent a biologically distinct disease with distinct metastatic patterns. To assess ICB response in B2M-mutant MSI cancer patients, future studies need to account for the fact that baseline survival of patients with B2M-mutant MSI cancer may be longer than of patients with B2M-wild type MSI cancer.
RESUMO
Regular colonoscopy even with short intervals does not prevent all colorectal cancers (CRC) in Lynch syndrome (LS). In the present study, we asked whether cancers detected under regular colonoscopy surveillance (incident cancers) are phenotypically different from cancers detected at first colonoscopy (prevalent cancers). We analyzed clinical, histological, immunological and mutational characteristics, including panel sequencing and high-throughput coding microsatellite (cMS) analysis, in 28 incident and 67 prevalent LS CRCs (n total = 95). Incident cancers presented with lower UICC and T stage compared to prevalent cancers (p < 0.0005). The majority of incident cancers (21/28) were detected after previous colonoscopy without any pathological findings. On the molecular level, incident cancers presented with a significantly lower KRAS codon 12/13 (1/23, 4.3% vs. 11/21, 52%; p = 0.0005) and pathogenic TP53 mutation frequency (0/17, 0% vs. 7/21, 33.3%; p = 0.0108,) compared to prevalent cancers; 10/17 (58.8%) incident cancers harbored one or more truncating APC mutations, all showing mutational signatures of mismatch repair (MMR) deficiency. The proportion of MMR deficiency-related mutational events was significantly higher in incident compared to prevalent CRC (p = 0.018). In conclusion, our study identifies a set of features indicative of biological differences between incident and prevalent cancers in LS, which should further be monitored in prospective LS screening studies to guide towards optimized prevention protocols.
RESUMO
Microsatellite instability (MSI) represents one of the major types of genomic instability in human cancers and is most common in colorectal cancer (CRC) and endometrial cancer (EC). MSI develops as a consequence of DNA mismatch repair (MMR) deficiency, which can occur sporadically or in the context of Lynch syndrome (LS), the most common inherited tumor syndrome. MMR deficiency triggers the accumulation of high numbers of somatic mutations in the affected cells, mostly indel mutations at microsatellite sequences. MSI tumors are among the most immunogenic human tumors and are often characterized by pronounced local immune responses. However, so far, little is known about immunological differences between sporadic and hereditary MSI tumors. Therefore, a systematic literature search was conducted to comprehensively collect data on the differences in local T cell infiltration and immune evasion mechanisms between sporadic and LS-associated MSI tumors. The vast majority of collected studies were focusing on CRC and EC. Generally, more pronounced T cell infiltration and a higher frequency of B2M mutations were reported for LS-associated compared to sporadic MSI tumors. In addition, phenotypic features associated with enhanced lymphocyte recruitment were reported to be specifically associated with hereditary MSI CRCs. The quantitative and qualitative differences clearly indicate a distinct biology of sporadic and hereditary MSI tumors. Clinically, these findings underline the need for differentiating sporadic and hereditary tumors in basic science studies and clinical trials, including trials evaluating immune checkpoint blockade therapy in MSI tumors.
RESUMO
Hyaluronan (HA) is a simple but diverse glycosaminoglycan. It plays a major role in aging, cellular senescence, cancer, and tissue homeostasis. In which way HA affects the surrounding tissues greatly depends on the molecular weight of HA. Whereas high molecular weight HA is associated with homeostasis and protective effects, HA fragments tend to be linked to the pathologic state. Furthermore, the interaction of HA with its binding partners, the hyaladherins, such as CD44, is essential for sustaining tissue integrity and is likewise related to cancer. The naked mole rat, a rodent species, possesses a special form of very high molecular weight (vHMW) HA, which is associated with the extraordinary cancer resistance and longevity of those animals. This review addresses HA and its diverse facets: from HA synthesis to degradation, from oligomeric HA to vHMW-HA and from its beneficial properties to the involvement in pathologies. We further discuss the functions of HA in the naked mole rat and compare them to human conditions. Though intensively researched, this simple polymer bears some secrets that may hold the key for a better understanding of cellular processes and the development of diseases, such as cancer.