Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 50(7): 957-967, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504655

RESUMO

Tizanidine, a centrally acting skeletal muscle relaxant, is predominantly metabolized by CYP1A2 and undergoes extensive hepatic first-pass metabolism after oral administration. As a highly extracted drug, the systemic exposure to tizanidine exhibits considerable interindividual variability and is altered substantially when coadministered with CYP1A2 inhibitors or inducers. The aim of the current study was to compare the performance of a permeability-limited multicompartment liver (PerMCL) model, which operates as an approximation of the dispersion model, and the well stirred model (WSM) for predicting tizanidine drug-drug interactions (DDIs). Physiologically based pharmacokinetic models were developed for tizanidine, incorporating the PerMCL model and the WSM, respectively, to simulate the interaction of tizanidine with a range of CYP1A2 inhibitors and inducers. Whereas the WSM showed a tendency to underpredict the fold change of tizanidine area under the plasma concentration-time curve (AUC ratio) in the presence of perpetrators, the use of PerMCL model increased precision (absolute average-fold error: 1.32-1.42 versus 1.58) and decreased bias (average-fold error: 0.97-1.25 versus 0.63) for the predictions of mean AUC ratios as compared with the WSM. The PerMCL model captured the observed range of individual AUC ratios of tizanidine as well as the correlation between individual AUC ratios and CYP1A2 activities without interactions, whereas the WSM was not able to capture these. The results demonstrate the advantage of using the PerMCL model over the WSM in predicting the magnitude and interindividual variability of DDIs for a highly extracted sensitive substrate tizanidine. SIGNIFICANCE STATEMENT: This study demonstrates the advantages of the PerMCL model, which operates as an approximation of the dispersion model, in mitigating the tendency of the WSM to underpredict the magnitude and variability of DDIs of a highly extracted CYP1A2 substrate tizanidine when it is administered with CYP1A2 inhibitors or inducers. The physiologically based pharmacokinetic modeling approach described herein is valuable to the understanding of drug interactions of highly extracted substrates and the source of its interindividual variability.


Assuntos
Inibidores do Citocromo P-450 CYP1A2 , Citocromo P-450 CYP1A2 , Clonidina/análogos & derivados , Citocromo P-450 CYP1A2/metabolismo , Interações Medicamentosas , Humanos , Fígado/metabolismo , Modelos Biológicos , Permeabilidade
2.
Toxicol Appl Pharmacol ; 414: 115424, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33524444

RESUMO

For the determination of acute toxicity of chemicals in zebrafish (Danio rerio) embryos, the OECD test guideline 236, relative to the Fish Embryo Toxicity Test (FET), stipulates a dose-response analysis of four lethal core endpoints and a quantitative characterization of abnormalities including their time-dependency. Routinely, the data are analyzed at the different observation times separately. However, observations at a given time strongly depend on the previous effects and should be analyzed jointly with them. To solve this problem, we developed multistate models for occurrence of developmental malformations and live events in zebrafish embryos exposed to eight concentrations of valproic acid (VPA) the first five days of life. Observations were recorded daily per embryo. We statistically infer on model structure and parameters using a numerical Bayesian framework. Hatching probability rate changed with time and we compared five forms of its time-dependence; a constant rate, a piecewise constant rate with a fixed hatching time at 48 h post fertilization, a piecewise constant rate with a variable hatching time, as well as a Hill and Gaussian form. A piecewise constant function of time adequately described the hatching data. The other transition rates were conditioned on the embryo body concentration of VPA, obtained using a physiologically-based pharmacokinetic model. VPA impacted mostly the malformation probability rate in hatched and non-hatched embryos. Malformation reversion probability rates were lowered by VPA. Direct mortality was low at the concentrations tested, but increased linearly with internal concentration. The model makes full use of data and gives a finer grain analysis of the teratogenic effects of VPA in zebrafish than the OECD-prescribed approach. We discuss the use of the model for obtaining toxicological reference values suitable for inter-species extrapolation. A general result is that complex multistate models can be efficiently evaluated numerically.


Assuntos
Anormalidades Induzidas por Medicamentos/etiologia , Modelos Biológicos , Teratogênicos/toxicidade , Testes de Toxicidade Aguda , Ácido Valproico/toxicidade , Anormalidades Induzidas por Medicamentos/embriologia , Animais , Teorema de Bayes , Simulação por Computador , Relação Dose-Resposta a Droga , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos dos fármacos , Análise Numérica Assistida por Computador , Teratogênicos/farmacocinética , Toxicocinética , Ácido Valproico/farmacocinética , Peixe-Zebra/embriologia
3.
J Pharmacokinet Pharmacodyn ; 48(6): 893-908, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34553275

RESUMO

We propose a Bayesian population modeling and virtual bioequivalence assessment approach to establishing dissolution specifications for oral dosage forms. A generalizable semi-physiologically based pharmacokinetic absorption model with six gut segments and liver, connected to a two-compartment model of systemic disposition for bupropion hydrochloride oral dosage forms was developed. Prior information on model parameters for gut physiology, bupropion physicochemical properties, and drug product properties were obtained from the literature. The release of bupropion hydrochloride from immediate-, sustained- and extended-release oral dosage forms was described by a Weibull function. In vitro dissolution data were used to assign priors to the in vivo release properties of the three bupropion formulations. We applied global sensitivity analysis to identify the influential parameters for plasma bupropion concentrations and calibrated them. To quantify inter- and intra-individual variability, plasma concentration profiles in healthy volunteers that received the three dosage forms, each at two doses, were used. The calibrated model was in good agreement with both in vitro dissolution and in vivo exposure data. Markov Chain Monte Carlo samples from the joint posterior parameter distribution were used to simulate virtual crossover clinical trials for each formulation with distinct drug dissolution profiles. For each trial, an allowable range of dissolution parameters ("safe space") in which bioequivalence can be anticipated was established. These findings can be used to assure consistent product performance throughout the drug product life-cycle and to support manufacturing changes. Our framework provides a comprehensive approach to support decision-making in drug product development.


Assuntos
Bupropiona , Medicamentos Genéricos , Administração Oral , Teorema de Bayes , Disponibilidade Biológica , Humanos , Modelos Biológicos , Comprimidos/farmacocinética , Equivalência Terapêutica
4.
J Pharmacokinet Pharmacodyn ; 47(6): 543-559, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32737765

RESUMO

A full Bayesian statistical treatment of complex pharmacokinetic or pharmacodynamic models, in particular in a population context, gives access to powerful inference, including on model structure. Markov Chain Monte Carlo (MCMC) samplers are typically used to estimate the joint posterior parameter distribution of interest. Among MCMC samplers, the simulated tempering algorithm (TMCMC) has a number of advantages: it can sample from sharp multi-modal posteriors; it provides insight into identifiability issues useful for model simplification; it can be used to compute accurate Bayes factors for model choice; the simulated Markov chains mix quickly and have assured convergence in certain conditions. The main challenge when implementing this approach is to find an adequate scale of auxiliary inverse temperatures (perks) and associated scaling constants. We solved that problem by adaptive stochastic optimization and describe our implementation of TMCMC sampling in the GNU MCSim software. Once a grid of perks is obtained, it is easy to perform posterior-tempered MCMC sampling or likelihood-tempered MCMC (thermodynamic integration, which bridges the joint prior and the posterior parameter distributions, with assured convergence of a single sampling chain). We compare TMCMC to other samplers and demonstrate its efficient sampling of multi-modal posteriors and calculation of Bayes factors in two stylized case-studies and two realistic population pharmacokinetic inference problems, one of them involving a large PBPK model.


Assuntos
Variação Biológica da População , Modelos Biológicos , Acetaminofen/administração & dosagem , Acetaminofen/farmacocinética , Algoritmos , Teorema de Bayes , Humanos , Cadeias de Markov , Método de Monte Carlo , Software , Teofilina/administração & dosagem , Teofilina/farmacocinética
5.
Toxicol Appl Pharmacol ; 379: 114640, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31251942

RESUMO

Prenatal exposures to perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) have been associated with child health outcomes, but many of these associations remain poorly characterized. The aim of this work was to provide new indicators of foetal exposure for the Spanish INMA birth cohort. First, a pregnancy and lactation physiologically based pharmacokinetic (PBPK) model was calibrated in a population framework to provide quantitative estimates for the PFOA and PFOS placental transfers in humans. The estimated distributions indicated that PFOA crosses the placental barrier at a rate three times higher than PFOS and shows a higher variability between mothers. The PBPK model was then used to back-calculate the time-varying daily intakes of the INMA mothers corrected for their individual history from a spot maternal concentration. We showed the importance of accounting for the mothers' history as different dietary intakes can result in similar measured concentrations at one time point. Finally, the foetal exposure was simulated in target organs over pregnancy using the PBPK model and the estimated maternal intakes. We showed that the pattern of PFOA and PFOS exposures varies greatly among the foetuses. About a third has levels of either one compound always higher than the levels of the other compound. The other two thirds showed different ranking of PFOA and PFOS in terms of concentrations in the target organs. Our simulated foetal exposures bring additional information to the measured maternal spot concentrations and can help to better characterize the prenatal exposure in target organs during windows of susceptibility.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Caprilatos/toxicidade , Exposição Ambiental/estatística & dados numéricos , Feto/efeitos dos fármacos , Fluorocarbonos/toxicidade , Exposição Materna/estatística & dados numéricos , Adolescente , Adulto , Ácidos Alcanossulfônicos/sangue , Caprilatos/sangue , Exposição Ambiental/efeitos adversos , Feminino , Sangue Fetal/química , Fluorocarbonos/sangue , Humanos , Exposição Materna/efeitos adversos , Modelos Estatísticos , Espanha/epidemiologia , Distribuição Tecidual , Toxicocinética , Adulto Jovem
6.
J Pharmacokinet Pharmacodyn ; 46(2): 173-192, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30949914

RESUMO

The aim of this study is to benchmark two Bayesian software tools, namely Stan and GNU MCSim, that use different Markov chain Monte Carlo (MCMC) methods for the estimation of physiologically based pharmacokinetic (PBPK) model parameters. The software tools were applied and compared on the problem of updating the parameters of a Diazepam PBPK model, using time-concentration human data. Both tools produced very good fits at the individual and population levels, despite the fact that GNU MCSim is not able to consider multivariate distributions. Stan outperformed GNU MCSim in sampling efficiency, due to its almost uncorrelated sampling. However, GNU MCSim exhibited much faster convergence and performed better in terms of effective samples produced per unit of time.


Assuntos
Diazepam/farmacocinética , Adulto , Teorema de Bayes , Simulação por Computador , Feminino , Humanos , Masculino , Cadeias de Markov , Modelos Biológicos , Método de Monte Carlo , Software
7.
Arch Toxicol ; 91(11): 3477-3505, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29051992

RESUMO

Adverse outcome pathways (AOPs) are a recent toxicological construct that connects, in a formalized, transparent and quality-controlled way, mechanistic information to apical endpoints for regulatory purposes. AOP links a molecular initiating event (MIE) to the adverse outcome (AO) via key events (KE), in a way specified by key event relationships (KER). Although this approach to formalize mechanistic toxicological information only started in 2010, over 200 AOPs have already been established. At this stage, new requirements arise, such as the need for harmonization and re-assessment, for continuous updating, as well as for alerting about pitfalls, misuses and limits of applicability. In this review, the history of the AOP concept and its most prominent strengths are discussed, including the advantages of a formalized approach, the systematic collection of weight of evidence, the linkage of mechanisms to apical end points, the examination of the plausibility of epidemiological data, the identification of critical knowledge gaps and the design of mechanistic test methods. To prepare the ground for a broadened and appropriate use of AOPs, some widespread misconceptions are explained. Moreover, potential weaknesses and shortcomings of the current AOP rule set are addressed (1) to facilitate the discussion on its further evolution and (2) to better define appropriate vs. less suitable application areas. Exemplary toxicological studies are presented to discuss the linearity assumptions of AOP, the management of event modifiers and compensatory mechanisms, and whether a separation of toxicodynamics from toxicokinetics including metabolism is possible in the framework of pathway plasticity. Suggestions on how to compromise between different needs of AOP stakeholders have been added. A clear definition of open questions and limitations is provided to encourage further progress in the field.


Assuntos
Rotas de Resultados Adversos , Ecotoxicologia/métodos , Animais , Ecotoxicologia/história , História do Século XXI , Humanos , Camundongos Endogâmicos C57BL , Controle de Qualidade , Medição de Risco/métodos , Biologia de Sistemas , Toxicocinética , Compostos de Vinila/efeitos adversos
8.
Stat Med ; 34(14): 2181-95, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24634327

RESUMO

Explicitly modeling underlying relationships between a survival endpoint and processes that generate longitudinal measured or reported outcomes potentially could improve the efficiency of clinical trials and provide greater insight into the various dimensions of the clinical effect of interventions included in the trials. Various strategies have been proposed for using longitudinal findings to elucidate intervention effects on clinical outcomes such as survival. The application of specifically Bayesian approaches for constructing models that address longitudinal and survival outcomes explicitly has been recently addressed in the literature. We review currently available methods for carrying out joint analyses, including issues of implementation and interpretation, identify software tools that can be used to carry out the necessary calculations, and review applications of the methodology.


Assuntos
Ensaios Clínicos como Assunto/métodos , Projetos de Pesquisa Epidemiológica , Modelos Estatísticos , Análise de Sobrevida , Fármacos Anti-HIV/farmacologia , Teorema de Bayes , Biomarcadores Farmacológicos/sangue , Contagem de Linfócito CD4 , Ensaios Clínicos como Assunto/estatística & dados numéricos , Desenho de Fármacos , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Transplante de Rim/efeitos adversos , Estudos Longitudinais , Modelos de Riscos Proporcionais , Qualidade de Vida , Insuficiência Renal Crônica/cirurgia , Software , Carga Viral
9.
Environ Health Perspect ; 132(3): 37005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498338

RESUMO

BACKGROUND: Understanding the variability across the human population with respect to toxicodynamic responses after exposure to chemicals, such as environmental toxicants or drugs, is essential to define safety factors for risk assessment to protect the entire population. Activation of cellular stress response pathways are early adverse outcome pathway (AOP) key events of chemical-induced toxicity and would elucidate the estimation of population variability of toxicodynamic responses. OBJECTIVES: We aimed to map the variability in cellular stress response activation in a large panel of primary human hepatocyte (PHH) donors to aid in the quantification of toxicodynamic interindividual variability to derive safety uncertainty factors. METHODS: High-throughput transcriptomics of over 8,000 samples in total was performed covering a panel of 50 individual PHH donors upon 8 to 24 h exposure to broad concentration ranges of four different toxicological relevant stimuli: tunicamycin for the unfolded protein response (UPR), diethyl maleate for the oxidative stress response (OSR), cisplatin for the DNA damage response (DDR), and tumor necrosis factor alpha (TNFα) for NF-κB signaling. Using a population mixed-effect framework, the distribution of benchmark concentrations (BMCs) and maximum fold change were modeled to evaluate the influence of PHH donor panel size on the correct estimation of interindividual variability for the various stimuli. RESULTS: Transcriptome mapping allowed the investigation of the interindividual variability in concentration-dependent stress response activation, where the average of BMCs had a maximum difference of 864-, 13-, 13-, and 259-fold between different PHHs for UPR, OSR, DDR, and NF-κB signaling-related genes, respectively. Population modeling revealed that small PHH panel sizes systematically underestimated the variance and gave low probabilities in estimating the correct human population variance. Estimated toxicodynamic variability factors of stress response activation in PHHs based on this dataset ranged between 1.6 and 6.3. DISCUSSION: Overall, by combining high-throughput transcriptomics and population modeling, improved understanding of interindividual variability in chemical-induced activation of toxicity relevant stress pathways across the human population using a large panel of plated cryopreserved PHHs was established, thereby contributing toward increasing the confidence of in vitro-based prediction of adverse responses, in particular hepatotoxicity. https://doi.org/10.1289/EHP11891.


Assuntos
Perfilação da Expressão Gênica , Hepatócitos , Humanos , Transcriptoma , Estresse Oxidativo
10.
Carcinogenesis ; 34(1): 2-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23222815

RESUMO

Benzene is a ubiquitous air pollutant that causes human leukemia and hematotoxic effects. Although the mechanism by which benzene causes toxicity is unclear, metabolism is required. A series of articles by Kim et al. used air and biomonitoring data from workers in Tianjin, China, to investigate the dose-specific metabolism (DSM) of benzene over a wide range of air concentrations (0.03-88.9 p.p.m.). Kim et al. concluded that DSM of benzene is greatest at air concentrations <1 p.p.m. This provocative finding motivated the American Petroleum Institute to fund a study by Price et al. to reanalyze the original data. Although their formal 'reanalysis' reproduced Kim's finding of enhanced DSM at sub-p.p.m. benzene concentrations, Price et al. argued that Kim's methods were inappropriate for assigning benzene exposures to low exposed subjects (based on measurements of urinary benzene) and for adjusting background levels of metabolites (based on median values from the 60 lowest exposed subjects). Price et al. then performed uncertainty analyses under alternative approaches, which led them to conclude that '… the Tianjin data appear to be too uncertain to support any conclusions …' regarding the DSM of benzene. They also argued that the apparent low-dose metabolism of benzene could be explained by 'lung clearance.' In addressing these criticisms, we show that the methods and arguments presented by Price et al. are scientifically unsound and that their results are unreliable.


Assuntos
Poluentes Ocupacionais do Ar/análise , Benzeno/metabolismo , Monitoramento Ambiental/normas , Modelos Estatísticos , Exposição Ocupacional , Humanos
11.
Pharmaceutics ; 15(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37765205

RESUMO

The most common method for establishing bioequivalence (BE) is to demonstrate similarity of concentration-time profiles in the systemic circulation, as a surrogate to the site of action. However, similarity of profiles from two formulations in the systemic circulation does not imply similarity in the gastrointestinal tract (GIT) nor local BE. We have explored the concordance of BE conclusions for a set of hypothetical formulations based on budesonide concentration profiles in various segments of gut vs. those in systemic circulation using virtual trials powered by physiologically based pharmacokinetic (PBPK) models. The impact of Crohn's disease on the BE conclusions was explored by changing physiological and biological GIT attributes. Substantial 'discordance' between local and systemic outcomes of VBE was observed. Upper GIT segments were much more sensitive to formulation changes than systemic circulation, where the latter led to false conclusions for BE. The ileum and colon showed a lower frequency of discordance. In the case of Crohn's disease, a product-specific similarity factor might be needed for products such as Entocort® EC to ensure local BE. Our results are specific to budesonide, but we demonstrate potential discordances between the local gut vs. systemic BE for the first time.

12.
BMC Genomics ; 13: 54, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22296956

RESUMO

BACKGROUND: Understanding hepatic zonation is important both for liver physiology and pathology. There is currently no effective systemic chemotherapy for human hepatocellular carcinoma (HCC) and its pathogenesis is of special interest. Genomic and proteomic data of HCC cells in different culture models, coupled to pathway-based analysis, can help identify HCC-related gene and pathway dysfunctions. RESULTS: We identified zonation-related expression profiles contributing to selective phenotypes of HCC, by integrating relevant experimental observations through gene set enrichment analysis (GSEA). Analysis was based on gene and protein expression data measured on a human HCC cell line (HepG2/C3A) in two culture conditions: dynamic microfluidic biochips and static Petri dishes. Metabolic activity (HCC-related cytochromes P450) and genetic information processing were dominant in the dynamic cultures, in contrast to kinase signaling and cancer-specific profiles in static cultures. That, together with analysis of the published literature, leads us to propose that biochips culture conditions induce a periportal-like hepatocyte phenotype while standard plates cultures are more representative of a perivenous-like phenotype. Both proteomic data and GSEA results further reveal distinct ubiquitin-mediated protein regulation in the two culture conditions. CONCLUSIONS: Pathways analysis, using gene and protein expression data from two cell culture models, confirmed specific human HCC phenotypes with regard to CYPs and kinases, and revealed a zonation-related pattern of expression. Ubiquitin-mediated regulation mechanism gives plausible explanations of our findings. Altogether, our results suggest that strategies aimed at inhibiting activated kinases and signaling pathways may lead to enhanced metabolism-mediated drug resistance of treated tumors. If that were the case, mitigating inhibition or targeting inactive forms of kinases would be an alternative.


Assuntos
Regulação Neoplásica da Expressão Gênica , Ubiquitina/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Glutamina/farmacologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Técnicas Analíticas Microfluídicas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Transdução de Sinais , Ubiquitinação , beta Catenina/metabolismo
13.
Toxicol Appl Pharmacol ; 259(3): 270-80, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22230336

RESUMO

We have analyzed transcriptomic, proteomic and metabolomic profiles of hepatoma cells cultivated inside a microfluidic biochip with or without acetaminophen (APAP). Without APAP, the results show an adaptive cellular response to the microfluidic environment, leading to the induction of anti-oxidative stress and cytoprotective pathways. In presence of APAP, calcium homeostasis perturbation, lipid peroxidation and cell death are observed. These effects can be attributed to APAP metabolism into its highly reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI). That toxicity pathway was confirmed by the detection of GSH-APAP, the large production of 2-hydroxybutyrate and 3-hydroxybutyrate, and methionine, cystine, and histidine consumption in the treated biochips. Those metabolites have been reported as specific biomarkers of hepatotoxicity and glutathione depletion in the literature. In addition, the integration of the metabolomic, transcriptomic and proteomic collected profiles allowed a more complete reconstruction of the APAP injury pathways. To our knowledge, this work is the first example of a global integration of microfluidic biochip data in toxicity assessment. Our results demonstrate the potential of that new approach to predictive toxicology.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Benzoquinonas/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Iminas/toxicidade , Técnicas Analíticas Microfluídicas/métodos , Acetaminofen/metabolismo , Analgésicos não Narcóticos/metabolismo , Benzoquinonas/metabolismo , Citoproteção , Perfilação da Expressão Gênica/métodos , Células Hep G2 , Humanos , Iminas/metabolismo , Metabolômica/métodos , Estresse Oxidativo , Proteômica/métodos
14.
Methods Mol Biol ; 2425: 29-56, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188627

RESUMO

Pharmacokinetics study the fate of xenobiotics in a living organism. Physiologically based pharmacokinetic (PBPK) models provide realistic descriptions of xenobiotics' absorption, distribution, metabolism, and excretion processes. They model the body as a set of homogeneous compartments representing organs, and their parameters refer to anatomical, physiological, biochemical, and physicochemical entities. They offer a quantitative mechanistic framework to understand and simulate the time-course of the concentration of a substance in various organs and body fluids. These models are well suited for performing extrapolations inherent to toxicology and pharmacology (e.g., between species or doses) and for integrating data obtained from various sources (e.g., in vitro or in vivo experiments, structure-activity models). In this chapter, we describe the practical development and basic use of a PBPK model from model building to model simulations, through implementation with an easily accessible free software.


Assuntos
Modelos Biológicos , Software , Farmacocinética , Xenobióticos
15.
Toxicol In Vitro ; 81: 105345, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35278637

RESUMO

Adverse Outcome Pathways (AOPs) are increasingly used to support the integration of in vitro data in hazard assessment for chemicals. Quantitative AOPs (qAOPs) use mathematical models to describe the relationship between key events (KEs). In this paper, data obtained in three cell lines, LHUMES, HepG2 and RPTEC/TERT1, using similar experimental protocols, was used to calibrate a qAOP of mitochondrial toxicity for two chemicals, rotenone and deguelin. The objectives were to determine whether the same qAOP could be used for the three cell types, and to test chemical-independence by cross-validation with a dataset obtained on eight other chemicals in LHUMES cells. Repeating the calibration approach for both chemicals in three cell lines highlighted various practical difficulties. Even when the same readouts of KEs are measured, the mathematical functions used to describe the key event relationships may not be the same. Cross-validation in LHUMES cells was attempted by estimating chemical-specific potency at the molecular initiating events and using the rest of the calibrated qAOP to predict downstream KEs: toxicity of azoxystrobin, carboxine, mepronil and thifluzamide was underestimated. Selection of most relevant readouts and accurate characterization of the molecular initiating event for cross-validation are critical when designing in vitro experiments targeted at calibrating qAOPs.


Assuntos
Rotas de Resultados Adversos , Linhagem Celular , Modelos Teóricos , Medição de Risco , Testes de Toxicidade
16.
CPT Pharmacometrics Syst Pharmacol ; 11(6): 755-765, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35385609

RESUMO

Physiologically-based pharmacokinetic (PBPK) models usually include a large number of parameters whose values are obtained using in vitro to in vivo extrapolation. However, such extrapolations can be uncertain and may benefit from inclusion of evidence from clinical observations via parametric inference. When clinical interindividual variability is high, or the data sparse, it is essential to use a population pharmacokinetics inferential framework to estimate unknown or uncertain parameters. Several approaches are available for that purpose, but their relative advantages for PBPK modeling are unclear. We compare the results obtained using a minimal PBPK model of a canonical theophylline dataset with quasi-random parametric expectation maximization (QRPEM), nonparametric adaptive grid estimation (NPAG), Bayesian Metropolis-Hastings (MH), and Hamiltonian Markov Chain Monte Carlo sampling. QRPEM and NPAG gave consistent population and individual parameter estimates, mostly agreeing with Bayesian estimates. MH simulations ran faster than the others methods, which together had similar performance.


Assuntos
Modelos Biológicos , Teorema de Bayes , Humanos , Cadeias de Markov , Método de Monte Carlo , Incerteza
17.
Front Pharmacol ; 13: 929200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091744

RESUMO

SimRFlow is a high-throughput physiologically based pharmacokinetic (PBPK) modelling tool which uses Certara's Simcyp® simulator. The workflow is comprised of three main modules: 1) a Data Collection module for automated curation of physicochemical (from ChEMBL and the Norman Suspect List databases) and experimental data (i.e.: clearance, plasma-protein binding, and blood-to-plasma ratio, from httk-R package databases), 2) a Simulation module which activates the Simcyp® simulator and runs Monte Carlo simulations on virtual subjects using the curated data, and 3) a Data Visualisation module for understanding the simulated compound-specific profiles and predictions. SimRFlow has three administration routes (oral, intravenous, dermal) and allows users to change some simulation parameters including the number of subjects, simulation duration, and dosing. Users are only expected to provide a file of the compounds they wish to simulate, and in return the workflow provides summary statistics, concentration-time profiles of various tissue types, and a database file (containing in-depth results) for each simulated compound. This is presented within a guided and easy-to-use R Shiny interface which provides many plotting options for the visualisation of concentration-time profiles, parameter distributions, trends between the different parameters, as well as comparison of predicted parameters across all batch-simulated compounds. The in-built R functions can be assembled in user-customised scripts which allows for the modification of the workflow for different purposes. SimRFlow proves to be a time-efficient tool for simulating a large number of compounds without any manual curation of physicochemical or experimental data necessary to run Simcyp® simulations.

18.
ALTEX ; 39(3): 499­518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35258090

RESUMO

The workshop titled "Application of evidence-based methods to construct mechanism-driven chemical assessment frameworks" was co-organized by the Evidence-based Toxicology Collaboration and the European Food Safety Authority (EFSA) and hosted by EFSA at its headquarters in Parma, Italy on October 2 and 3, 2019. The goal was to explore integration of systematic review with mechanistic evidence evaluation. Participants were invited to work on concrete products to advance the exploration of how evidence-based approaches can support the development and application of adverse outcome pathways (AOP) in chemical risk assessment. The workshop discussions were centered around three related themes: 1) assessing certainty in AOPs, 2) literature-based AOP development, and 3) integrating certainty in AOPs and non-animal evidence into decision frameworks. Several challenges, mostly related to methodology, were identified and largely determined the workshop recommendations. The workshop recommendations included the comparison and potential alignment of processes used to develop AOP and systematic review methodology, including the translation of vocabulary of evidence-based methods to AOP and vice versa, the development and improvement of evidence mapping and text mining methods and tools, as well as a call for a fundamental change in chemical risk and uncertainty assessment methodology if to be conducted based on AOPs and new approach methodologies (NAM). The usefulness of evidence-based approaches for mechanism-based chemical risk assessments was stressed, particularly the potential contribution of the rigor and transparency inherent to such approaches in building stakeholders' trust for implementation of NAM evidence and AOPs into chemical risk assessment.


Assuntos
Rotas de Resultados Adversos , Inocuidade dos Alimentos , Humanos , Itália , Medição de Risco/métodos
19.
Arch Toxicol ; 85(5): 367-485, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21533817

RESUMO

The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated.


Assuntos
Alternativas aos Testes com Animais/tendências , Qualidade de Produtos para o Consumidor/legislação & jurisprudência , Cosméticos/normas , Testes de Toxicidade/tendências , Alternativas aos Testes com Animais/normas , Animais , Disponibilidade Biológica , Testes de Carcinogenicidade/métodos , União Europeia , Guias como Assunto , Humanos , Reprodutibilidade dos Testes , Medição de Risco/métodos , Medição de Risco/tendências , Pele/efeitos dos fármacos , Testes de Toxicidade/métodos
20.
CPT Pharmacometrics Syst Pharmacol ; 10(5): 420-427, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33793084

RESUMO

As model-informed drug development becomes an integral part of modern approaches to the discovery of new therapeutic entities and showing their safety and effectiveness, modalities of incorporating the paradigm into widespread practice require a revisit. Traditionally, modeling and simulation (M&S) have been performed by specialized teams who create bespoke models for each case and have reservations about letting modeling be done by the greater mass of scientists engaged in various stages of drug development. An analogy can be drawn between M&S and automobiles: typical drivers of ordinary cars use them for daily tasks, such as going from point A to B whereas specialized Formula 1 drivers using bespoke individually made cars to test the latest technologies. The reliability and robustness of ordinary cars for the first group requires elements related to quality and endurance that are very different from those applicable to any Formula 1 car supported by a large team of engineers. In this commentary, we frame and analyze the problems concerning the structure and setup of various M&S tools, and their pros and cons. We demonstrate that many misconceptions have precluded having an open discussion on what each modality of M&S tools strives to achieve, and we provide data and evidence that support the move of M&S to main stream use by many, as opposed to specialized usage by few. Parallels are drawn in many other areas involving laboratory instrumentation, statistical analyses, and so on.


Assuntos
Descoberta de Drogas , Modelos Teóricos , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA