RESUMO
Animal studies implicate one-carbon metabolism and DNA methylation genes in hepatocellular carcinoma (HCC) development in the setting of metabolic perturbations. Using human samples, we investigated the associations between common and rare variants in these closely related biochemical pathways and risk for metabolic HCC development in a multicenter international study. We performed targeted exome sequencing of 64 genes among 556 metabolic HCC cases and 643 cancer-free controls with metabolic conditions. Multivariable logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs), adjusting for multiple comparisons. Gene-burden tests were used for rare variant associations. Analyses were performed in the overall sample and among non-Hispanic whites. The results show that among non-Hispanic whites, presence of rare functional variants in ABCC2 was associated with 7-fold higher risk of metabolic HCC (OR = 6.92, 95% CI: 2.38-20.15, P = 0.0004), and this association remained significant when analyses were restricted to functional rare variants observed in ≥2 participants (cases 3.2% versus controls 0.0%, P = 1.02 × 10-5). In the overall multiethnic sample, presence of rare functional variants in ABCC2 was nominally associated with metabolic HCC (OR = 3.60, 95% CI: 1.52-8.58, P = 0.004), with similar nominal association when analyses were restricted to functional rare variants observed in ≥2 participants (cases 2.9% versus controls 0.2%, P = 0.006). A common variant in PNPLA3 (rs738409[G]) was associated with higher HCC risk in the overall sample (P = 6.36 × 10-6) and in non-Hispanic whites (P = 0.0002). Our findings indicate that rare functional variants in ABCC2 are associated with susceptibility to metabolic HCC in non-Hispanic whites. PNPLA3-rs738409 is also associated with metabolic HCC risk.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Metilação de DNA/genética , Predisposição Genética para Doença , Estudos de Casos e Controles , Células Germinativas/patologia , Carbono , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
RNA helicase DHX15 plays a significant role in vasculature development and lung metastasis in vertebrates. In addition, several studies have demonstrated the overexpression of DHX15 in the context of hepatocellular carcinoma. Therefore, we hypothesized that this helicase may play a significant role in liver regeneration, physiology, and pathology. Dhx15 gene deficiency was generated by CRISPR/Cas9 in zebrafish and by TALEN-RNA in mice. AUM Antisense-Oligonucleotides were used to silence Dhx15 in wild-type mice. The hepatocellular carcinoma tumor induction model was generated by subcutaneous injection of Hepa 1-6 cells. Homozygous Dhx15 gene deficiency was lethal in zebrafish and mouse embryos. Dhx15 gene deficiency impaired liver organogenesis in zebrafish embryos and liver regeneration after partial hepatectomy in mice. Also, heterozygous mice presented decreased number and size of liver metastasis after Hepa 1-6 cells injection compared to wild-type mice. Dhx15 gene silencing with AUM Antisense-Oligonucleotides in wild-type mice resulted in 80% reduced expression in the liver and a significant reduction in other major organs. In addition, Dhx15 gene silencing significantly hindered primary tumor growth in the hepatocellular carcinoma experimental model. Regarding the potential use of DHX15 as a diagnostic marker for liver disease, patients with hepatocellular carcinoma showed increased levels of DHX15 in blood samples compared with subjects without hepatic affectation. In conclusion, Dhx15 is a key regulator of liver physiology and organogenesis, is increased in the blood of cirrhotic and hepatocellular carcinoma patients, and plays a key role in controlling hepatocellular carcinoma tumor growth and expansion in experimental models.
Assuntos
Carcinoma Hepatocelular , RNA Helicases , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Oligonucleotídeos , RNA Helicases/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genéticaRESUMO
BACKGROUND AND AIMS: PTTG1 is almost undetectable in adult livers but is highly expressed in hepatocarcinoma. While little is known about its involvement in liver fibrosis, PTTG1 expression is associated with DLK1. We assessed the role of the PTTG1/DLK1 pathway in fibrosis progression and the potential therapeutic effect of PTTG1 silencing in fibrosis. METHODS: Pttg1 and Dlk1 were studied in liver and isolated cell populations of control and fibrotic rats and in human liver biopsies. The fibrotic molecular signature was analysed in Pttg1-/- and Pttg1+/+ fibrotic mice. Finally, Pttg1 silencing was evaluated in rats as a novel antifibrotic therapy. RESULTS: Pttg1 and Dlk1 mRNA selectively increased in fibrotic rats paralleling fibrosis progression. Serum DLK1 concentrations correlated with hepatic collagen content and systemic and portal haemodynamics. Human cirrhotic livers showed greater PTTG1 and DLK1 transcript abundance than non-cirrhotic, and reduced collagen was observed in Pttg1 Pttg1-/- mice. The liver fibrotic molecular signature revealed lower expression of genes related to extracellular matrix remodelling including Mmp8 and 9 and Timp4 and greater eotaxin and Mmp13 than fibrotic Pttg1+/+ mice. Finally, interfering Pttg1 resulted in reduced liver fibrotic area, lower α-Sma and decreased portal pressure than fibrotic animals. Furthermore, Pttg1 silencing decreased the transcription of Dlk1, collagens I and III, Pdgfrß, Tgfrß, Timp1, Timp2 and Mmp2. CONCLUSIONS: Pttg1/Dlk1 are selectively overexpressed in the cirrhotic liver and participate in ECM turnover regulation. Pttg1 disruption decreases Dlk1 transcription and attenuates collagen deposition. PTTG1/DLK1 signalling is a novel pathway for targeting the progression of liver fibrosis.
Assuntos
Proteínas de Ligação ao Cálcio , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana , Neoplasias Hipofisárias , Securina , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Fibrose , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Oncogenes , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Ratos , Securina/genética , Securina/metabolismoRESUMO
High-affinity uptake of natural nucleosides as well as nucleoside derivatives used in anticancer therapies is mediated by human concentrative nucleoside transporters (hCNTs). hCNT1, the hCNT family member that specifically transports pyrimidines, is also a transceptor involved in tumor progression. In particular, oncogenesis appears to be associated with hCNT1 downregulation in some cancers, although the underlying mechanisms are largely unknown. Here, we sought to address changes in colorectal and pancreatic ductal adenocarcinoma-both of which are important digestive cancers-in the context of treatment with fluoropyrimidine derivatives. An analysis of cancer samples and matching non-tumoral adjacent tissues revealed downregulation of hCNT1 protein in both types of tumor. Further exploration of the putative regulation of hCNT1 by microRNAs (miRNAs), which are highly deregulated in these cancers, revealed a direct relationship between the oncomiRs miR-106a and miR-17 and the loss of hCNT1. Collectively, our findings provide the first demonstration that hCNT1 inhibition by these oncomiRs could contribute to chemoresistance to fluoropyrimidine-based treatments in colorectal and pancreatic cancer.
Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/patologia , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo , MicroRNAs/genética , Neoplasias Pancreáticas/patologia , Idoso , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico , Taxa de Sobrevida , Células Tumorais CultivadasRESUMO
BACKGROUND AND AIMS: Despite the availability of new-generation drugs, hepatocellular carcinoma (HCC) is still the third most frequent cause of cancer-related deaths worldwide. Cerium oxide nanoparticles (CeO2 NPs) have emerged as an antioxidant agent in experimental liver disease because of their antioxidant, anti-inflammatory, and antisteatotic properties. In the present study, we aimed to elucidate the potential of CeO2 NPs as therapeutic agents in HCC. APPROACH AND RESULTS: HCC was induced in 110 Wistar rats by intraperitoneal administration of diethylnitrosamine for 16 weeks. Animals were treated with vehicle or CeO2 NPs at weeks 16 and 17. At the eighteenth week, nanoceria biodistribution was assessed by mass spectrometry (MS). The effect of CeO2 NPs on tumor progression and animal survival was investigated. Hepatic tissue MS-based phosphoproteomics as well as analysis of principal lipid components were performed. The intracellular uptake of CeO2 NPs by human ex vivo perfused livers and human hepatocytes was analyzed. Nanoceria was mainly accumulated in the liver, where it reduced macrophage infiltration and inflammatory gene expression. Nanoceria treatment increased liver apoptotic activity, while proliferation was attenuated. Phosphoproteomic analysis revealed that CeO2 NPs affected the phosphorylation of proteins mainly related to cell adhesion and RNA splicing. CeO2 NPs decreased phosphatidylcholine-derived arachidonic acid and reverted the HCC-induced increase of linoleic acid in several lipid components. Furthermore, CeO2 NPs reduced serum alpha-protein levels and improved the survival of HCC rats. Nanoceria uptake by ex vivo perfused human livers and in vitro human hepatocytes was also demonstrated. CONCLUSIONS: These data indicate that CeO2 NPs partially revert the cellular mechanisms involved in tumor progression and significantly increase survival in HCC rats, suggesting that they could be effective in patients with HCC.
Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Cério/uso terapêutico , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Nanopartículas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Cério/farmacocinética , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas Experimentais/mortalidade , Neoplasias Hepáticas Experimentais/patologia , Masculino , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , alfa-Fetoproteínas/análiseRESUMO
BACKGROUND & AIMS: Sorafenib and lenvatinib are the first-line treatments approved in hepatocellular carcinoma (HCC), but information is lacking about the relationships between their pharmacokinetics, patients pharmacogenetic profiles, adverse events (AE) and overall survival. We aimed to elucidate these relationships of tyrosine Kinase Inhibitors, such as sorafenib, in order to improve the design of trials testing it in combination with checkpoint inhibitors. METHODS: We assessed the pharmacokinetics of sorafenib and its N-oxide metabolite at day-0, day-7, day-30, day-60, day-90, day-120, day-150 and day-180 and nine single-nucleotide polymorphisms (SNP) in five genes related to sorafenib metabolism/transport to identify the best point for starting the combination between tyrosine kinases and checkpoint inhibitors. RESULTS: We prospectively included 49 patients (96% cirrhotic, 37% hepatitis-C, 82% Child-Pugh-A and 59% BCLC-C). Pharmacokinetic values peaked at day-7 and progressively declined until day-60. In the 16 patients without further dose modifications after day-60, pharmacokinetic values remained stable through day-180 (sorafenib P = .90; N-oxide P = .93). Pharmacokinetic values were higher in patients with early dermatological adverse events and lower in patients with early diarrhoea. Sorafenib and N-oxide pharmacokinetic values varied linearly with different alleles of MRP2*3972. CONCLUSIONS: Sorafenib's pharmacokinetics is heterogeneous across HCC patients. This heterogeneity affects adverse events development and must be taken into account in setting the dose and timing of its combination with checkpoint inhibitors.
Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Antineoplásicos/efeitos adversos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Niacinamida/efeitos adversos , Farmacogenética , Compostos de Fenilureia/uso terapêutico , Sorafenibe/uso terapêuticoRESUMO
The availability of new direct antiviral agents to safely and effectively treat the hepatitis C virus represents a major advancement in the field of liver disease. Most patients achieve complete viral eradication sustained over time. In addition, the administration of these new agents is safe and does not require limitations when liver function is impaired. Some now expect the hepatitis C virus to be completely eradicated in a few years. However, not all data are positive. In April 2016, we published a cohort study suggesting that viral eradication with the new agents could be associated in time with the emergence of recurrent cancer sites in patients previously treated for hepatocellular carcinoma. In this review, we update our report and summarize the data provided in recent publications. We also speculate about the mechanisms for cancer emergence and stress the need for further studies.
Assuntos
Antivirais/uso terapêutico , Carcinoma Hepatocelular/virologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Neoplasias Hepáticas/virologia , Monitorização Imunológica , Antivirais/efeitos adversos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Hepacivirus/imunologia , Hepatite C/diagnóstico , Hepatite C/imunologia , Hepatite C/virologia , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Recidiva Local de Neoplasia , Valor Preditivo dos Testes , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Evasão TumoralRESUMO
UNLABELLED: Understanding the hepatic regenerative process has clinical interest as the effectiveness of many treatments for chronic liver diseases is conditioned by efficient liver regeneration. Experimental evidence points to the need for a temporal coordination between cytokines, growth factors, and metabolic signaling pathways to enable successful liver regeneration. One intracellular mediator that acts as a signal integration node for these processes is the serine-threonine kinase Akt/protein kinase B (Akt). To investigate the contribution of Akt during hepatic regeneration, we performed partial hepatectomy in mice lacking Akt1, Akt2, or both isoforms. We found that absence of Akt1 or Akt2 does not influence liver regeneration after partial hepatectomy. However, hepatic-specific Akt1 and Akt2 null mice show impaired liver regeneration and increased mortality. The major abnormal cellular events observed in total Akt-deficient livers were a marked reduction in cell proliferation, cell hypertrophy, glycogenesis, and lipid droplet formation. Most importantly, liver-specific deletion of FoxO1, a transcription factor regulated by Akt, rescued the hepatic regenerative capability in Akt1-deficient and Akt2-deficient mice and normalized the cellular events associated with liver regeneration. CONCLUSION: The Akt-FoxO1 signaling pathway plays an essential role during liver regeneration.
Assuntos
Fatores de Transcrição Forkhead/fisiologia , Regeneração Hepática , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/fisiologia , Animais , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Hepatócitos/patologia , Hiperplasia , Metabolismo dos Lipídeos , Masculino , Camundongos , Transdução de Sinais/fisiologiaRESUMO
Direct antiviral agents mark a major progress for the treatment of chronic hepatitis C virus infection. The rate of cure is higher than 90% in most populations and the safety profile is good. However, like any treatment, there are potential unexpected adverse events. Several reports have indicated that antiviral therapy may be associated with the reactivation of hepatitis B virus or the emergence of herpes virus in a time-related manner. Recently, several studies have described a potential unexpected incidence of hepatocellular carcinoma in treated patients, both in those without a prior history of cancer and those who have been successfully treated and were disease-free for different periods of time. Furthermore, the emergence of cancer is also characterized by a more aggressive and faster progression to advanced stages, making treatment impossible. Thus, a careful risk-benefit analysis must be made when considering antiviral treatment with the new agents in patients with hepatitis C virus.
Assuntos
Antivirais/farmacologia , Carcinoma Hepatocelular/virologia , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Neoplasias Hepáticas/virologia , Hepacivirus/genética , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/epidemiologia , Herpes Simples/epidemiologia , Humanos , Incidência , Recidiva Local de Neoplasia/epidemiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Simplexvirus/fisiologia , Ativação ViralRESUMO
Hepatitis C virus (HCV) infection is a major biomedical problem worldwide as it causes severe liver disease in millions of humans around the world. Despite the recent approval of specific drugs targeting HCV replication to be used in combination with alpha interferon (IFN-α) and ribavirin, there is still an urgent need for pangenotypic, interferon-free therapies to fight this genetically diverse group of viruses. In this study, we used an unbiased screening cell culture assay to interrogate a chemical library of compounds approved for clinical use in humans. This system enables identifying nontoxic antiviral compounds targeting every aspect of the viral life cycle, be the target viral or cellular. The aim of this study was to identify drugs approved for other therapeutic applications in humans that could be effective components of combination therapies against HCV. As a result of this analysis, we identified 12 compounds with antiviral activity in cell culture, some of which had previously been identified as HCV inhibitors with antiviral activity in cell culture and had been shown to be effective in patients. We selected two novel HCV antivirals, hydroxyzine and benztropine, to characterize them by determining their specificity and genotype spectrum as well as by defining the step of the replication cycle targeted by these compounds. We found that both compounds effectively inhibited viral entry at a postbinding step of genotypes 1, 2, 3, and 4 without affecting entry of other viruses.
Assuntos
Antivirais/uso terapêutico , Benzotropina/uso terapêutico , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hidroxizina/uso terapêutico , Interferon-alfa/uso terapêutico , Ribavirina/uso terapêutico , Bioensaio , Técnicas de Cultura de Células , Quimioterapia Combinada , Genética Populacional , Genótipo , Hepacivirus/genética , Hepatite C/virologia , Humanos , Fígado , Bibliotecas de Moléculas Pequenas , Replicação Viral/efeitos dos fármacosRESUMO
During the last decade, tyrosine kinase inhibitors (TKIs) sorafenib and regorafenib have been standard systemic treatments for advanced hepatocellular carcinoma (HCC). Previous data associated sorafenib with inflammasome activation. However, the role of the inflammasome in sorafenib and regorafenib signaling has not been described in liver cancer patients. For this purpose, we analyzed inflammasome-related transcriptomic changes in a murine HCC model. Our data confirmed inflammasome activation after both TKI treatments, sharing a similar pattern of increased gene expression. According to human database results, transcriptional increase of inflammasome genes is associated with poorer prognosis for male liver cancer patients, suggesting a sex-dependent role for inflammasome activation in HCC therapy. In biopsies of HCC and its surrounding tissue, we detected durable increases in the inflammasome activation pattern after sorafenib or regorafenib treatment in male patients. Further supporting its involvement in sorafenib action, inflammasome inhibition (MCC950) enhanced sorafenib anticancer activity in experimental HCC models, while no direct in vitro effect was observed in HCC cell lines. Moreover, activated human THP-1 macrophages released IL-1ß after sorafenib administration, while 3D Hep3B spheres displayed increased tumor growth after IL-1ß addition, pointing to the liver microenvironment as a key player in inflammasome action. In summary, our results unveil the inflammasome pathway as an actionable target in sorafenib or regorafenib therapy and associate an inflammasome signature in HCC and surrounding tissue with TKI administration. Therefore, targeting inflammasome activation, principally in male patients, could help to overcome sorafenib or regorafenib resistance and enhance the efficacy of TKI treatments in HCC.
RESUMO
Cholangiocarcinomas (CCAs) are cancers originated in the biliary tree, which are characterized by their high mortality and marked chemoresistance, partly due to the activity of ATP-binding cassette (ABC) export pumps, whose inhibition has been proposed as a strategy for enhancing the response to chemotherapy. We have previously shown that ß-caryophyllene oxide (CRYO) acts as a chemosensitizer in hepatocellular carcinoma by inhibiting ABCB1, MRP1, and MRP2. Here, we have evaluated the usefulness of CRYO in inhibiting BCRP and improving the response of CCA to antitumor drugs. The TCGA-CHOL cohort (n = 36) was used for in silico analysis. BCRP expression (mRNA and protein) was assayed in samples from intrahepatic (iCCA) and extrahepatic (eCCA) tumors (n = 50) and CCA-derived cells (EGI-1 and TFK-1). In these cells, BCRP-dependent mitoxantrone transport was determined by flow cytometry. At non-toxic concentrations, CRYO inhibited BCRP function, which enhanced the cytostatic effect of drugs used in the treatment of CCA. The BCRP ability to confer resistance to a panel of antitumor drugs was determined in Chinese hamster ovary (CHO) cells with stable BCRP expression. At non-toxic concentrations, CRYO markedly reduced BCRP-induced resistance to known substrate drugs (mitoxantrone and SN-38) and cisplatin, gemcitabine, sorafenib, and 5-FU but not oxaliplatin. Neither CRYO nor cisplatin alone significantly affected the growth of BCRP-expressing tumors subcutaneously implanted in immunodeficient mice. In contrast, intratumor drug content was enhanced when administered together, and tumor growth was inhibited. In sum, the combined treatment of drugs exported by BCRP with CRYO can improve the response to chemotherapy in CCA patients.
Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Cricetinae , Humanos , Camundongos , Animais , Cisplatino/farmacologia , Mitoxantrona/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Células CHO , Resistencia a Medicamentos Antineoplásicos , Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias/metabolismo , Cricetulus , Antineoplásicos/farmacologia , Colangiocarcinoma/tratamento farmacológico , Linhagem Celular TumoralRESUMO
Background and aims: Metabolic dysfunction-associated steatohepatitis (MASH) is a significant health concern with limited treatment options. AXL, a receptor tyrosine kinase activated by the GAS6 ligand, promotes MASH through activation of hepatic stellate cells and inflammatory macrophages. This study identified cell subsets affected by MASH progression and the effect of AXL inhibition. Methods: Mice were fed chow or different fat-enriched diets to induce MASH, and small molecule AXL kinase inhibition with bemcentinib was evaluated. Gene expression was measured by qPCR. Time-of-flight mass cytometry (CyTOF) used single cells from dissociated livers, acquired on the Fluidigm Helios, and cell populations were studied using machine learning. Results: In mice fed different fat-enriched diets, liver steatosis alone was insufficient to elevate plasma soluble AXL (sAXL) levels. However, in conjunction with inflammation, sAXL increases, serving as an early indicator of steatohepatitis progression. Bemcentinib, an AXL inhibitor, effectively reduced proinflammatory responses in MASH models, even before fibrosis appearance. Utilizing CyTOF analysis, we detected a decreased population of Kupffer cells during MASH while promoting infiltration of monocytes/macrophages and CD8+ T cells. Bemcentinib partially restored Kupffer cells, reduced pDCs and GzmB- NK cells, and increased GzmB+CD8+ T cells and LSECs. Additionally, AXL inhibition enhanced a subtype of GzmB+CD8+ tissue-resident memory T cells characterized by CX3CR1 expression. Furthermore, bemcentinib altered the transcriptomic landscape associated with MASH progression, particularly in TLR signaling and inflammatory response, exhibiting differential cytokine expression in the plasma, consistent with liver repair and decreased inflammation. Conclusion: Our findings highlight sAXL as a biomarker for monitoring MASH progression and demonstrate that AXL targeting shifted liver macrophages and CD8+ T-cell subsets away from an inflammatory phenotype toward fibrotic resolution and organ healing, presenting a promising strategy for MASH treatment.
Assuntos
Receptor Tirosina Quinase Axl , Cirrose Hepática , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Animais , Masculino , Camundongos , Benzocicloeptenos/farmacologia , Benzocicloeptenos/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , TriazóisRESUMO
BACKGROUND & AIMS: Metallothionein-3 (hMT3) is a structurally unique member of the metallothioneins family of low-mass cysteine-rich proteins. hMT3 has poorly characterized functions, and its importance for hepatocellular carcinoma (HCC) cells has not yet been elucidated. Therefore, we investigated the molecular mechanisms driven by hMT3 with a special emphasis on susceptibility to sorafenib. METHODS: Intrinsically sorafenib-resistant (BCLC-3) and sensitive (Huh7) cells with or without up-regulated hMT3 were examined using cDNA microarray and methods aimed at mitochondrial flux, oxidative status, cell death, and cell cycle. In addition, in ovo/ex ovo chick chorioallantoic membrane (CAM) assays were conducted to determine a role of hMT3 in resistance to sorafenib and associated cancer hallmarks, such as angiogenesis and metastastic spread. Molecular aspects of hMT3-mediated induction of sorafenib-resistant phenotype were delineated using mass-spectrometry-based proteomics. RESULTS: The phenotype of sensitive HCC cells can be remodeled into sorafenib-resistant one via up-regulation of hMT3. hMT3 has a profound effect on mitochondrial respiration, glycolysis, and redox homeostasis. Proteomic analyses revealed a number of hMT3-affected biological pathways, including exocytosis, glycolysis, apoptosis, angiogenesis, and cellular stress, which drive resistance to sorafenib. CONCLUSIONS: hMT3 acts as a multifunctional driver capable of inducing sorafenib-resistant phenotype of HCC cells. Our data suggest that hMT3 and related pathways could serve as possible druggable targets to improve therapeutic outcomes in patients with sorafenib-resistant HCC.
RESUMO
BACKGROUND AND AIMS: Conventional pathological analysis fails to achieve sufficient sensitivity and specificity for the diagnosis of hepatocellular carcinoma (HCC) in small nodules. Immunohistochemical staining for glypican 3 (GPC3), heat shock protein 70 (HSP70) and glutamine synthetase (GS) has been suggested to allow a confident diagnosis but no prospective study has established the diagnostic accuracy of this approach. The aim of this study is to assess prospectively the diagnostic accuracy of a panel of markers (GPC3, HSP70, GS) for the diagnosis of HCC in patients with cirrhosis with a small (5-20 mm) nodule detected by ultrasound screening. METHODS: Sixty patients with cirrhosis with a single nodule 5-20 mm newly detected by ultrasound were included in the study. Contrast-enhanced ultrasound, magnetic resonance and fine needle biopsy of the nodule (gold standard) were performed; the biopsy was repeated in case of diagnostic failures. Three consecutive sections of the first biopsy sample with meaningful material were stained with antibodies against GPC3, HSP70 and GS. RESULTS: Forty patients were diagnosed with HCC. The sensitivity and specificity for HCC diagnosis were: GPC3 57.5% and 95%, HSP70 57.5% and 85%, GS 50% and 90%, respectively. The sensitivity and specificity of the different combinations were: GPC3+HSP70 40% and 100%; GPC3+GS 35% and 100%; HSP70+GS 35% and 100%; GPC3+HSP70+GS 25% and 100%. When at least two of the markers were positive (regardless of which), the sensitivity and specificity were 60% and 100%, respectively. Conventional pathological analysis yielded three false negative results, but the addition of this panel only correctly classified one of these cases as HCC. CONCLUSION: These data within a prospective study establish the clinical usefulness of this panel of markers for the diagnosis of early HCC. However, the panel only slightly increases the diagnostic accuracy in an expert setting.
Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/diagnóstico , Detecção Precoce de Câncer/métodos , Glutamato-Amônia Ligase/metabolismo , Glipicanas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Neoplasias Hepáticas/diagnóstico , Idoso , Biópsia por Agulha Fina , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/metabolismo , Feminino , Humanos , Fígado/diagnóstico por imagem , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sensibilidade e Especificidade , UltrassonografiaRESUMO
Objectives: Chronic liver disease and related complications, cirrhosis and hepatocellular carcinoma, are associated with high mortality. Curative treatments, partial hepatectomy or liver transplantation, have limited applicability in patients with cirrhosis due to the poor liver regenerative capacity. Thus, we need to find new diagnostic and therapeutic alternatives, to block the disease progression and to improve the survival of patients. In this context, preclinical studies have demonstrated the key role of the protein kinase B (Akt) in liver dysfunction, but the status of Akt and its targets in patients with chronic hepatopathy remains unknown. Aims: To determine the activation status of the Akt pathway and their association with liver functionality in cirrhotic patients. Methods: This retrospective study includes liver tissue samples from 36 hepatectomized patients with (n=27) and without (n=9) cirrhosis. Multiplex analysis of proteins involved in the Akt/mTOR pathway was performed using a Luminex panel and Western blot. Conventional liver function tests were determined in serum before resection surgery. Results: Akt and forkhead box protein O1 (FoxO1) are overexpressed in the liver of cirrhotic patients: (2.1 vs. 1.0 densitometric relative units (DRU); p<0.01, and 9.5 vs. 4.4 DRU; p<0.01, respectively). FoxO1 showed the best correlation with markers of liver injury (aspartate aminotransferase (ASAT): r=0.51, p<0.05; alanine aminotransferase (ALAT): r=0.49, p<0.05), and was the only enzyme in the Akt pathway identified as an independent predictor of ASAT and ALAT levels. Conclusions: The intrahepatic expression of FoxO1 could have clinical utility as a potential prognostic marker for patients with advanced liver disease.
RESUMO
BACKGROUND: Long noncoding RNAs (lncRNAs) are emerging as key players in cancer, including hepatocellular carcinoma (HCC). Here we identify the mechanism implicated in the HCC inhibition of a set of lncRNAs, and their contribution to the process of hepatocarcinogenesis. METHODS AND RESULTS: The top-ranked 35 lncRNAs downregulated in HCC (Top35 LNDH) were validated in several human HCC cohorts. We demonstrate that their inhibition is associated with promoter hypermethylation in HCC compared to control tissue, and in HCC human cell lines compared to primary hepatocytes. Moreover, demethylating treatment of HCC human cell lines induced the expression of these lncRNAs. The Top35 LNDH were preferentially expressed in the adult healthy liver compared to other tissues and fetal liver and were induced in well-differentiated HepaRG cells. Remarkably, their knockdown compromised the expression of other hepato-specific genes. Finally, the expression of the Top35 LNDH positively correlates with the grade of tumor differentiation and, more importantly, with a better patient prognosis. CONCLUSIONS: Our results demonstrate that the selected Top35 LNDH are not only part of the genes that compose the hepatic differentiated signature but participate in its establishment. Moreover, their downregulation through DNA methylation occurs during the process of hepatocarcinogenesis compromising hepatocellular differentiation and HCC patients' prognosis.
RESUMO
BACKGROUND: Dermatologic adverse events (DAEs) are associated with a better outcome in patients with hepatocellular carcinoma (HCC) irrespective of the therapeutic agent received. The exact mechanisms associated with the development of DAEs are unknown although several studies point to direct toxicity of tyrosine kinase inhibitors (TKIs) to the skin or an immune-mediated reaction triggered by the oncologic treatment. As is the case in other conditions, individual genetic variants may partially explain a higher risk of DAEs. AIM: To evaluate the contribution of several gene variants to the risk of developing DAEs in HCC patients treated with TKIs. METHODS: We first analyzed 27 single-nucleotide polymorphisms (SNPs) from 12 genes selected as potential predictors of adverse event (AE) development in HCC patients treated with sorafenib [Barcelona Clinic Liver Cancer 1 (BCLC1) cohort]. Three additional cohorts were analyzed for AGT1 (rs699) and AGT2 (rs4762) polymorphisms-initially identified as predictors of DAEs: BCLC2 (n = 79), Northern Italy (n = 221) and Naples (n = 69) cohorts, respectively. The relation between SNPs and DAEs and death were assessed by univariate and multivariate Cox regression models, and presented with hazard ratios and their 95% confidence intervals (95%CI). RESULTS: The BCLC1 cohort showed that patients with arterial hypertension (AHT) (HR = 1.61; P value = 0.007) and/or AGT SNPs had an increased risk of DAEs. Thereafter, AGT2 (rs4762) AA genotype was found to be linked to a statistically significant increased probability of DAEs (HR = 5.97; P value = 0.0201, AA vs GG) in the Northern Italy cohort by multivariate analysis adjusted for BCLC stage, ECOG-PS, diabetes and AHT. The value of this genetic marker was externally validated in the cohort combining the BCLC1, BCLC2 and Naples cohorts [HR = 3.12 (95%CI: 1.2-8.14), P value = 0.0199, AGT2 (rs4762) AA vs AG genotype and HR = 2.73 (95%CI: 1.18-6.32) P value = 0.0188, AGT2 (rs4762) AA vs GG genotype]. None of the other gene variants tested were found to be associated with the risk of DAE development. CONCLUSION: DAE development in HCC patients receiving TKIs could be explained by the AGT2 (rs4762) gene variant. If validated in other anti-oncogenic treatments, it might be considered a good prognosis marker.
RESUMO
BACKGROUND: Sorafenib constitutes a suitable treatment alternative for patients with advanced hepatocellular carcinoma (HCC) in whom atezolizumab + bevacizumab therapy is contraindicated. The aim of the study was the identification of a miRNA signature in liquid biopsy related to sorafenib response. METHODS: miRNAs were profiled in hepatoblastoma HepG2 cells and tested in animal models, extracellular vesicles (EVs), and plasma from HCC patients. RESULTS: Sorafenib altered the expression of 11 miRNAs in HepG2 cells. miR-200c-3p and miR-27a-3p exerted an anti-tumoral activity by decreasing cell migration and invasion, whereas miR-122-5p, miR-148b-3p, miR-194-5p, miR-222-5p, and miR-512-3p exerted pro-tumoral properties by increasing cell proliferation, migration, or invasion, or decreasing apoptosis. Sorafenib induced a change in EVs population with an increased number of larger EVs, and promoted an accumulation of miR-27a-3p, miR-122-5p, miR-148b-3p, miR-193b-3p, miR-194-5p, miR-200c-3p, and miR-375 into exosomes. In HCC patients, circulating miR-200c-3p baseline levels were associated with increased survival, whereas high levels of miR-222-5p and miR-512-3p after 1 month of sorafenib treatment were related to poor prognosis. The RNA sequencing revealed that miR-200c-3p was related to the regulation of cell growth and death, whereas miR-222-5p and miR-512-3p were related to metabolic control. CONCLUSIONS: The study showed that Sorafenib regulates a specific miRNA signature in which miR-200c-3p, miR-222-5p, and miR-512-3p bear prognostic value and contribute to treatment response.
Assuntos
Carcinoma Hepatocelular , MicroRNAs , Sorafenibe , Biomarcadores , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêuticoRESUMO
Advanced hepatocellular carcinoma patients treated with sorafenib who develop early dermatologic adverse events (eDAEs) have a better prognosis. This may be linked to immune mechanisms, and thus, it is relevant to assess the association between peripheral immunity and the probability of developing eDAEs. Peripheral blood mononuclear cells of 52 HCC patients treated with sorafenib were analyzed at baseline and throughout the first eight weeks of therapy. T, B, Natural Killer cells, and their immune checkpoints expression data were characterized by flow cytometry. Cytokine release and immune-suppression assays were carried out ex vivo. Cox baseline and time-dependent regression models were applied to evaluate the probability of increased risk of eDAEs. DNAM-1, PD-1, CD69, and LAG-3 in T cells, plus CD16 and LAG-3 in NK cells, are significantly associated with the probability of developing eDAEs. While NK DNAM-1+ cells express activation markers, T DNAM-1+ cells induce immune suppression and show immune exhaustion. This is the first study to report an association between immune checkpoints expression in circulating immune cells and the increased incidence of eDAEs. Our results support the hypothesis for an off-target role of sorafenib in immune modulation. We also describe a novel association between DNAM-1 and immune exhaustion in T cells.