Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Neuropsychopharmacol ; 19(10)2016 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-27037577

RESUMO

BACKGROUND: The fronto-striatal circuits are the common neurobiological basis for neuropsychiatric disorders, including schizophrenia, Parkinson's disease, Huntington's disease, attention deficit hyperactivity disorder, obsessive-compulsive disorder, and Tourette's syndrome. Fronto-striatal circuits consist of motor circuits, associative circuits, and limbic circuits. All circuits share 2 common features. First, all fronto-striatal circuits consist of hyper direct, direct, and indirect pathways. Second, all fronto-striatal circuits are modulated by dopamine. Intracellularly, the effect of dopamine is largely mediated through the cyclic adenosine monophosphate/protein kinase A signaling cascade with an additional role for the cyclic guanosine monophosphate/protein kinase G pathway, both of which can be regulated by phosphodiesterases. Phosphodiesterases are thus a potential target for pharmacological intervention in neuropsychiatric disorders related to dopaminergic regulation of fronto-striatal circuits. METHODS: Clinical studies of the effects of different phosphodiesterase inhibitors on cognition, affect, and motor function in relation to the fronto-striatal circuits are reviewed. RESULTS: Several selective phosphodiesterase inhibitors have positive effects on cognition, affect, and motor function in relation to the fronto-striatal circuits. CONCLUSION: Increased understanding of the subcellular localization and unraveling of the signalosome concept of phosphodiesterases including its function and dysfunction in the fronto-striatal circuits will contribute to the design of new specific inhibitors and enhance the potential of phosphodiesterase inhibitors as therapeutics in fronto-striatal circuits.

2.
IUBMB Life ; 64(12): 965-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23129425

RESUMO

Cyclic nucleotide phosphodiesterases (PDEs) are responsible for the breakdown of cyclic nucleotides, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). As such, they are crucial regulators of levels of cyclic nucleotide-mediated signaling. cAMP signaling and cGMP signaling have been associated with neuroplasticity and protection, and influencing their levels in the cell by inhibition of PDEs has become a much studied target for treatment in a wide array of disorders, including neurodegenerative disorders. In this review, we will focus on the involvement of PDEs in neurodegenerative disorders. In comparison with preclinical work, data on human patients are scarce. Alzheimer's disease is associated with changes in PDE4, PDE7, and PDE8 expression in the brain. Altered functioning of PDE4 as well as PDE11 is associated with major depressive disorder. In multiple sclerosis, there are indications of alterations in expression of several PDE subtypes in the central nervous system; however, evidence is indirect. In Huntington's disease and Parkinson's disease, most research has focused on PDE1B and PDE10, because of their abundant presence in striatal neurons. In another rare, neurodegenerative striatal motor disorder, that is, autosomal-dominant striatal degeneration, genetic defects in PDE8B gene are thought to underlie the neurodegenerative processes. Although the latter disorder has showed a causative dysfunction of PDEs, this does not hold for the neurodegenerative disorders discussed above, in which changes in PDE levels seemingly rather represent secondary changes and compensation to prior existing dysfunction. However, normalizing cyclic nucleotide signaling via PDE inhibition remains interesting for the treatment of neurodegenerative disorders.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/genética , 3',5'-GMP Cíclico Fosfodiesterases/genética , Encéfalo/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Doenças Neurodegenerativas/genética , Neurônios/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , 3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Encéfalo/patologia , Regulação da Expressão Gênica , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Transdução de Sinais
3.
Psychopharmacology (Berl) ; 234(4): 613-620, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27933365

RESUMO

RATIONALE: Depression is characterized by an excessive attribution of value to negative feedback. This imbalance in feedback sensitivity can be measured using the probabilistic reversal-learning (PRL) task. This task was initially designed for clinical research, but introduction of its rodent version provides a new and much needed translational paradigm to evaluate potential novel antidepressants. OBJECTIVES: In the present study, we aimed at evaluating the effects of a compound showing clear antidepressant properties-ketamine (KET)-on the sensitivity of rats to positive and negative feedback in the PRL paradigm. METHODS: We trained healthy rats in an operant version of the PRL task. For successful completion of the task, subjects had to learn to ignore infrequent and misleading feedback, arising from the probabilistic (80:20) nature of the discrimination. Subsequently, we evaluated the effect of KET (5, 10, and 20 mg/kg) on feedback sensitivity 1, 24, and 48 h after administration. RESULTS: We report that acute administration of the highest dose of KET (20 mg/kg) rapidly and persistently decreases the proportion of lose-shift responses made by rats after receiving negative feedback. CONCLUSION: Present results suggest that KET decreases negative feedback sensitivity and that changes in this basic neurocognitive function might be one of the factors responsible for its antidepressant action.


Assuntos
Antidepressivos/farmacologia , Ketamina/farmacologia , Reversão de Aprendizagem/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Sprague-Dawley
4.
Neuropsychopharmacology ; 39(11): 2497-505, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24813825

RESUMO

Memory consolidation is defined by the stabilization of a memory trace after acquisition, and consists of numerous molecular cascades that mediate synaptic plasticity. Commonly, a distinction is made between an early and a late consolidation phase, in which early refers to the first hours in which labile synaptic changes occur, whereas late consolidation relates to stable and long-lasting synaptic changes induced by de novo protein synthesis. How these phases are linked at a molecular level is not yet clear. Here we studied the interaction of the cyclic nucleotide-mediated pathways during the different phases of memory consolidation in rodents. In addition, the same pathways were studied in a model of neuronal plasticity, long-term potentiation (LTP). We demonstrated that cGMP/protein kinase G (PKG) signaling mediates early memory consolidation as well as early-phase LTP, whereas cAMP/protein kinase A (PKA) signaling mediates late consolidation and late-phase-like LTP. In addition, we show for the first time that early-phase cGMP/PKG signaling requires late-phase cAMP/PKA-signaling in both LTP and long-term memory formation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Potenciação de Longa Duração/fisiologia , Memória de Longo Prazo/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Testes Neuropsicológicos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Transdução de Sinais , Técnicas de Cultura de Tecidos
5.
Behav Brain Res ; 236(1): 16-22, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22951181

RESUMO

The objective of this study was to assess the effects of phosphodiesterase type 2 (PDE2) and type 10 (PDE10) inhibition on memory function in the object recognition task using the scopolamine- and MK-801-induced memory deficit model. The effects of the PDE2 inhibitor BAY 60-7550 and the PDE10 inhibitor PQ-10 on object recognition performance were investigated in the scopolamine (0.1mg/kg, i.p.) or MK-801 (0.125 mg/kg, i.p.) model. BAY 60-7550 was tested at a dose of 0.3-3mg/kg (p.o.) in both models; PQ-10 was tested at doses of 0.1-1mg/kg (p.o.) in the scopolamine model and 0.3-3mg/kg in the MK-801 model. All compounds were injected 30 min before the learning trial. Both BAY 60-7550 (1mg/kg) and PQ-10 (0.3mg/kg) attenuated the scopolamine-induced memory deficit. The MK-801-induced memory deficit was reversed after treatment with each PDE inhibitor at a dose of 1mg/kg or higher. PQ10 was highly brain penetrant, whereas 60-7550 levels in the brain were very low after oral treatment. We concluded that since BAY 60-7550 and PQ10 reversed both scopolamine- and MK-801-induced memory deficits, this supports the notion that dual substrate PDE inhibitors might be suitable candidates for cognition enhancement.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Maleato de Dizocilpina , Antagonistas de Aminoácidos Excitatórios , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Antagonistas Muscarínicos , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Escopolamina , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Imidazóis/farmacocinética , Imidazóis/farmacologia , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/psicologia , Inibidores de Fosfodiesterase/farmacocinética , Ratos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray , Triazinas/farmacocinética , Triazinas/farmacologia
6.
Pharmacol Biochem Behav ; 101(3): 311-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22306745

RESUMO

Although there are number of studies showing that phosphodiesterase (PDE) 4 and 5 inhibitors affect different kinds of memory, their effects on spatial memory consolidation in conjunction with the cholinergic activity in the hippocampus have not been studied before. In the present study firstly, rats were evaluated for the effects of different doses of the PDE4 inhibitor rolipram and the PDE5 inhibitor sildenafil on spatial memory consolidation in the water maze task. Rolipram or sildenafil was daily administered intraperitoneally 3 or 0 h after the last trial of training, respectively. Then in a separate related experiment the effect of the most efficient doses of rolipram or sildenafil accompanied by an intrahippocampally injected protein kinase A (PKA) or protein kinase G (PKG) inhibitor, respectively, was examined. Finally for determination of the hippocampal cholinergic activity the protein expression of hippocampal vesicular acetylcholine transporter (VAChT) and cholineacetyltransferase (ChAT) was measured. Rolipram at 0.03 mg/kg as well as sildenafil at 3 mg/kg increased spatial memory and their enhancing effect was completely blocked following inhibition of PKA and PKG, respectively. Furthermore, none of the treatments had a significant effect on the hippocampal ChAT and VAChT levels. Our data showed that rolipram and sildenafil enhanced spatial memory consolidation in an inverted U-shaped dose-response curve. This effect is dependent on the activity of cAMP/PKA- and cGMP/PKG-mediated pathways, respectively in the hippocampus. However, we did not find evidence for a chronic increase of cholinergic activity in the observed PDE inhibitor-induced memory improvement.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Memória/efeitos dos fármacos , Piperazinas/farmacologia , Rolipram/farmacologia , Sulfonas/farmacologia , Acetilcolina/metabolismo , Animais , Colina O-Acetiltransferase/metabolismo , Interações Medicamentosas , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 5/farmacologia , Piperazinas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Purinas/administração & dosagem , Purinas/farmacologia , Ratos , Ratos Wistar , Rolipram/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Citrato de Sildenafila , Sulfonas/administração & dosagem , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
7.
Behav Brain Res ; 232(2): 335-47, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22490364

RESUMO

The object recognition task (ORT) is a popular one-trial learning test for animals. In the current study, we investigated several methodological issues concerning the task. Data was pooled from 28 ORT studies, containing 731 male Wistar rats. We investigated the relationship between 3 common absolute- and relative discrimination measures, as well as their relation to exploratory activity. In this context, the effects of pre-experimental habituation, object familiarity, trial duration, retention interval and the amnesic drugs MK-801 and scopolamine were investigated. Our analyses showed that the ORT is very sensitive, capable of detecting subtle differences in memory (discrimination) and exploratory performance. As a consequence, it is susceptible to potential biases due to (injection) stress and side effects of drugs. Our data indicated that a minimum amount of exploration is required in the sample and test trial for stable significant discrimination performance. However, there was no relationship between the level of exploration in the sample trial and discrimination performance. In addition, the level of exploration in the test trial was positively related to the absolute discrimination measure, whereas this was not the case for relative discrimination measures, which correct for exploratory differences, making them more resistant to exploration biases. Animals appeared to remember object information over multiple test sessions. Therefore, when animals have encountered both objects in prior test sessions, the object preference observed in the test trial of 1h retention intervals is probably due to a relative difference in familiarity between the objects in the test trial, rather than true novelty per se. Taken together, our findings suggest to take into consideration pre-experimental exposure (familiarization) to objects, habituation to treatment procedures, and the use of relative discrimination measures when using the ORT.


Assuntos
Pesquisa Comportamental/métodos , Aprendizagem por Discriminação , Comportamento Exploratório , Reconhecimento Psicológico , Retenção Psicológica , Animais , Comportamento Animal , Masculino , Ratos , Projetos de Pesquisa , Fatores de Tempo
8.
Neuropsychopharmacology ; 34(8): 1914-25, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19262466

RESUMO

Phosphodiesterase (PDE) inhibitors prevent the breakdown of the second messengers, cyclic AMP (cAMP) and cyclic GMP (cGMP), and are currently studied as possible targets for cognitive enhancement. Earlier studies indicated beneficial effects of PDE inhibitors in object recognition. In this study we tested the effects of three PDE inhibitors on spatial memory as assessed in a place and object recognition task. Furthermore, as both cAMP and cGMP are known vasodilators, the effects of PDE inhibition on cognitive functions could be explained by enhancement of cerebrovascular function. We examined this possibility by measuring the effects of PDE5 and PDE4 inhibitor treatment on local cerebral blood flow and glucose utilization in rats using [14C]-iodoantipyrine and [14C]-2-deoxyglucose quantitative autoradiography, respectively. In the spatial location task, PDE5 inhibition (cGMP) with vardenafil enhanced only early phase consolidation, PDE4 inhibition (cAMP) with rolipram enhanced only late phase consolidation, and PDE2 inhibition (cAMP and cGMP) with Bay 60-7550 enhanced both consolidation processes. Furthermore, PDE5 inhibition had no cerebrovascular effects in hippocampal or rhinal areas. PDE4 inhibition increased rhinal, but not hippocampal blood flow, whereas it decreased glucose utilization in both areas. In general, PDE5 inhibition decreased the ratio between blood flow and glucose utilization, indicative of general oligaemia; whereas PDE4 inhibition increased this ratio, indicative of general hyperemia. Both oligaemic and hyperemic conditions are detrimental for brain function and do not explain memory enhancement. These results underscore the specific effects of cAMP and cGMP on memory consolidation (object and spatial memory) and provide evidence that the underlying mechanisms of PDE inhibition on cognition are independent of cerebrovascular effects.


Assuntos
Encéfalo/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Glucose/metabolismo , Memória/efeitos dos fármacos , Nootrópicos/farmacologia , Inibidores de Fosfodiesterase/farmacologia , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/enzimologia , Artérias Cerebrais/efeitos dos fármacos , Artérias Cerebrais/enzimologia , Circulação Cerebrovascular/fisiologia , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/enzimologia , Transtornos da Memória/fisiopatologia , Testes Neuropsicológicos , Inibidores da Fosfodiesterase 5 , Ratos , Ratos Wistar , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA