Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Pediatr Radiol ; 53(9): 1854-1862, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37249622

RESUMO

This technical innovation assesses the adaptability of some common automated segmentation tools on abnormal pediatric magnetic resonance (MR) brain scans. We categorized 35 MR scans by pathologic features: (1) "normal"; (2) "atrophy"; (3) "cavity"; (4) "other." The following three tools, (1) Computational Anatomy Toolbox version 12 (CAT12); (2) Statistical Parametic Mapping version 12 (SPM12); and (3) MRTool, were tested on each scan-with default and adjusted settings. Success was determined by radiologist consensus on the surface accuracy. Automated segmentation failed in scans demonstrating severe surface brain pathology. Segmentation of the "cavity" group was ineffective, with success rates of 23.1% (CAT12), 69.2% (SPM12) and 46.2% (MRTool), even with refined settings and manual edits. Further investigation is required to improve this workflow and automated segmentation methodology for complex surface pathology.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Criança , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Atrofia/patologia , Processamento de Imagem Assistida por Computador/métodos
2.
Exp Appl Acarol ; 83(1): 31-68, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33201392

RESUMO

Phytoptidae s.str. is a lineage of eriophyoid mites associated with angiosperms. Based on representative taxon sampling and four gene markers (COI, HSP70, 18S, and 28S), we inferred the molecular phylogeny of this group and performed comparative analyses of cuticle-lined female internal genitalia. Although basal relationships were unclear, several well supported clades were recovered. These clades were supported by geography, host associations, and female genital anatomy, but contradicted the current morphology-based systematics. The monophyly of each of five conventional supraspecific groupings (Fragariocoptes, Phytoptus, Phytoptinae, Sierraphytoptinae, and Sierraphytoptini) is rejected based on a series of statistical tests. Additionally, four morphological characters (the absence of tibial solenidion φ and opisthosomal seta c1, presence of telosomal pseudotagma, and 'morphotype') were found to be homoplasies that cannot be used to confidently delimit supraspecific lineages of phytoptids. However, our molecular topology was highly congruent with female genital characters. Eight molecular clades were unambiguously supported by the shapes and topography of the spermathecal apparatus and genital apodemes. This suggests that the female genital anatomy could be an important factor affecting cladogenesis in Phytoptidae, a conclusion contrasting with the general expectation that host characteristics should be a major macroevolutionary force influencing the evolution of host-specific symbionts. Indeed, despite the high host-specificity, there were no apparent cophylogenetic patterns. Furthermore, we show that gall-inducing ability evolved multiple times in phytoptids. Because gall formation creates nearly instantaneous niche partitioning and the potential loss or reduction of gene flow, we hypothesize that it could be an important evolutionary factor affecting speciation within different host-associated clades of phytoptid mites.


Assuntos
Magnoliopsida , Ácaros , Animais , Feminino , Genitália , Genitália Feminina , Ácaros/genética , Filogenia
3.
Mol Phylogenet Evol ; 119: 105-117, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29074461

RESUMO

Eriophyoid, or four-legged mites, represent a large and ancient radiation of exclusively phytophagous organisms known from the Triassic (230 Mya). Hypothesizing phylogenetic relatedness of Eriophyoidea among mites is a major challenge due to the absence of unambiguous morphological synapomorphies, resulting in ten published hypotheses placing eriophyoids in various places in the acariform tree of life. Here we test the evolutionary relationships of eriophyoids using six genes and a representative taxonomic sampling of acariform mites. The total evidence analysis places eriophyoids as the sister group of the deep soil-dwelling, vermiform family Nematalycidae (Endeostigmata). This arrangement was supported by the rDNA and CO1 partitions. In contrast, the nuclear protein partition (genes EF1-α, SRP54, HSP70) suggests that Eriophyoidea is sister to a lineage including Tydeidae, Ereynetidae, and Eupodidae (Eupodina: Trombidiformes). On both of these alternative topologies, eriophyoids appear as a long branch, probably involving the loss of basal diversity in early evolution. We analyze this result by using phylogenetically explicit hypothesis testing, investigating the phylogenetic signal from individual genes and rDNA stem and loop regions, and removing long branches and rogue taxa. Regardless of the two alternative placements, (i) the cheliceral morphology of eriophyoids, one of the traits deemed phylogenetically important, was likely derived directly from the plesiomorphic acariform chelicerae rather than from the modified chelicerae of some trombidiform lineages with a reduced fixed digit; and (ii) two potential synapomorphies of Eriophyoidea+Raphignathina (Trombidiformes) related to the reduction of genital papillae and to the terminal position of PS segment can be dismissed as result of convergent evolution. Our analyses substantially narrow the remaining available hypotheses on eriophyoid relationships and provide insights on the early evolution of acariform mites.


Assuntos
Ácaros/classificação , Filogenia , Animais , Funções Verossimilhança , Modelos Biológicos , Probabilidade
4.
Exp Appl Acarol ; 70(2): 137-53, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27502114

RESUMO

The infracapitulum of eriophyoid mites comprises a cone-like basal infracapitulum, containing a pharynx, and a distal infracapitulum, forming a proboscis ensheathing a bunch of stylets. A well-developed basal labral section was observed in all studied specimens. A newly discerned structure, the suboral fork, situated in the ventral part of the proboscis was discovered. It is larger in diptilomiopids and Nalepella and notably smaller in eriophyids and phytoptids. This structure presumably determines the site of piercing and functions in a similar way to the pressure foot of a sewing machine which controls the movements of a needle. In diptilomiopids the suboral fork might have an additional function: it is a stopper which prevents the proboscis from further penetrating into plant tissues. It is possible that the suboral fork is homologous with the labium of early derivative acariform mites. The proboscis might be a fusion product of the infracapitular lateral lips, malapophyses and the labium. The proboscis serves as a feeding structure in eriophyoids; two ways of sucking plant cell sap, depending on shapes of proboscis and labrum, are hypothesized. Further work is needed to draw conclusions on homologies and the function of all gnathosomal structures in eriophyoids.


Assuntos
Ácaros/anatomia & histologia , Animais , Feminino , Microscopia Confocal , Boca/anatomia & histologia
5.
Exp Appl Acarol ; 65(2): 149-61, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25355075

RESUMO

Previous research on the locomotion of the Nematalycidae has only been undertaken on Gordialycus, which is by far the most elongated genus of the family. Gordialycus is dependent on an unusual form of peristalsis to move around. It was not known whether the genera of Nematalycidae with shorter bodies also used this mode of locomotion. Our videographic recordings of Osperalycus did not reveal peristalsis. Instead, this mite appears to move around the mineral regolith via the expansion and constriction of the metapodosomal and genital region, allowing greater versatility in the way that the annular regions contract and extend. This type of locomotion would enable relatively short bodied nematalycids to anchor themselves into secure positions before extending their anterior regions through tight spaces. Low-temperature scanning electron micrographs show that the short bodied genera have integumental features that appear to be associated with this mode of locomotion. Peristalsis is almost certainly a more derived form of locomotion that is an adaptation to the unusually long body form of Gordialycus.


Assuntos
Locomoção , Ácaros/anatomia & histologia , Animais , Feminino , Masculino , Ácaros/fisiologia , Ácaros/ultraestrutura
6.
Insects ; 14(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37367343

RESUMO

Over the past century and a half, the taxonomic placement of Eriophyoidea has been in flux. For much of this period, this group has been treated as a subtaxon within Trombidiformes. However, the vast majority of recent phylogenetic analyses, including almost all phylogenomic analyses, place this group outside Trombidiformes. The few studies that still place Eriophyoidea within Trombidiformes are likely to be biased by incomplete taxon/gene sampling, long branch attraction, the omission of RNA secondary structure in sequence alignment, and the inclusion of hypervariable expansion-contraction rRNA regions. Based on the agreement among a number of independent analyses that use a range of different datasets (morphology; multiple genes; mitochondrial/whole genomes), Eriophyoidea are almost certain to be closely related to Nematalycidae, a family of vermiform mites within Endeostigmata, a basal acariform grade. Much of the morphological evidence in support of this relationship was apparent after the discovery of Nematalycidae in the middle of the 20th century. However, this evidence has largely been disregarded until very recently, perhaps because of overconfidence in the placement of Eriophyoidea within Trombidiformes. Here, we briefly review and identify a number of biases, both molecular- and morphology-based, that can lead to erroneous reconstructions of the position of Eriophyoidea in the tree of life.

7.
Insects ; 14(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37754727

RESUMO

The setae in Eriophyoidea are filiform, slightly bent and thickened near the base. Confocal microscopy indicates that their proximal and distal parts differ in light reflection and autofluorescence. Approximately 50 genera have atypically shaped setae: bifurcated, angled or swollen. These modifications are known in the basal part of prosomal setae u', ft', ft″, d, v, bv, ve, sc and caudal setae h2. We assessed the distribution of atypically shaped setae in Eriophyoidea and showed that they are scattered in different phylogenetic lineages. We hypothesized that the ancestral setae of eriophyoid mites were bifurcated before later simplifying into filiform setae. We also proposed that hypo-furcating setae are a synapomorphy that unites Eriophyoidea with Nematalycidae. We analyzed four new mitochondrial genomes of Leipothrix, the largest genus with bifurcated d, and showed that it is monophyletic and has a unique mitochondrial gene order with translocated trnK. We exclude Cereusacarus juniperensisn. comb. Xue and Yin, 2020 from Leipothrix and transfer five Epitrimerus spp. to Leipothrix: L. aegopodii (Liro 1941) n. comb., L. femoralis (Liro 1941) n. comb., L. geranii (Liro 1941) n. comb., L. ranunculi (Liro 1941) n. comb., and L. triquetra (Meyer 1990) n. comb.

8.
PLoS One ; 17(2): e0264358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213630

RESUMO

It is generally thought that the anterior border of the opisthosoma of acariform mites is delineated by the disjugal furrow, but there is no evidence to support this other than the superficial appearance of tagmosis in some oribatids. It is proposed herein that the disjugal furrow is an apomorphic feature that does not correspond with any segmental borders. Although the disjugal furrow is absent from Proteonematalycus wagneri Kethley, the visible body segments of this species indicate that this furrow, when present, intersects the metapodosoma. Therefore, the disjugal furrow does not delineate the anterior border of the opisthosoma. Instead, this border is between segments D and E (segments VI and VII for all arachnids). This hypothesis can be accommodated by a new model in which the proterosoma warps upwards relative to the main body axis. This model, which is applicable to all Acariformes, if not all arachnids, explains the following phenomena: 1) the location of the gnathosomal neuromeres within the idiosoma; 2) the relatively posterior position of the paired eyes; 3) the shape of the synganglion; 4) the uneven distribution of legs in most species of acariform mites with elongate bodies.


Assuntos
Ácaros/ultraestrutura , Animais
9.
Sci Rep ; 12(1): 3811, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264574

RESUMO

Eriophyoid mites represent a hyperdiverse, phytophagous lineage with an unclear phylogenetic position. These mites have succeeded in colonizing nearly every seed plant species, and this evolutionary success was in part due to the mites' ability to induce galls in plants. A gall is a unique niche that provides the inducer of this modification with vital resources. The exact mechanism of gall formation is still not understood, even as to whether it is endogenic (mites directly cause galls) or exogenic (symbiotic microorganisms are involved). Here we (i) investigate the phylogenetic affinities of eriophyoids and (ii) use comparative metagenomics to test the hypothesis that the endosymbionts of eriophyoid mites are involved in gall formation. Our phylogenomic analysis robustly inferred eriophyoids as closely related to Nematalycidae, a group of deep-soil mites belonging to Endeostigmata. Our comparative metagenomics, fluorescence in situ hybridization, and electron microscopy experiments identified two candidate endosymbiotic bacteria shared across samples, however, it is unlikely that they are gall inducers (morphotype1: novel Wolbachia, morphotype2: possibly Agrobacterium tumefaciens). We also detected an array of plant pathogens associated with galls that may be vectored by the mites, and we determined a mite pathogenic virus (Betabaculovirus) that could be tested for using in biocontrol of agricultural pest mites.


Assuntos
Ácaros , Animais , Bactérias , Evolução Biológica , Hibridização in Situ Fluorescente , Ácaros/genética , Filogenia , Plantas
10.
Insects ; 11(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283590

RESUMO

The lychee erinose mite (LEM), Aceria litchii (Keifer) is a serious pest of lychee (Litchi chinensis Sonn.). LEM causes a type of gall called 'erineum' (abnormal felty growth of trichomes from the epidermis), where it feeds, reproduces and protects itself from biotic and abiotic adversities. In February of 2018, LEM was found in a commercial lychee orchard on Pine Island, Florida. Infestations were recorded on young leaves, stems, and inflorescences of approximately 30 young trees (1.5-3.0 yrs.) of three lychee varieties presenting abundant new growth. Although LEM is present in Hawaii, this mite is a prioritized quarantine pest in the continental USA and its territories. Florida LEM specimens showed small morphological differences from the original taxonomic descriptions of Keifer (1943) and Huang (2008). The observed differences are probably an artifact of the drawings in the original descriptions. Molecular comparisons were conducted on the DNA of LEM specimens from India, Hawaii, Brazil, Taiwan, Australia and Florida. The amplified COI fragment showed very low nucleotide variation among the locations and thus, could be used for accurate LEM identification. The ITS1 sequences and partial 5.8S fragments displayed no nucleotide differences for specimens from any of the locations except Australia. Consistent differences were observed in the ITS2 and 28S fragments. The ITS1-ITS2 concatenated phylogeny yielded two lineages, with Australia in one group and Hawaii, India, Brazil, Florida and Taiwan in another. Specimens from Taiwan and Florida present identical ITS and rDNA segments, suggesting a common origin; however, analysis of additional sequences is needed to confirm the origin of the Florida population.

11.
Zootaxa ; 4442(2): 331-337, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30313966

RESUMO

Until now, Honduriella Denmark Evans has been known only from the holotype of its type species, Honduriella maxima Denmark Evans. In recent surveys conducted in the Brazilian state of Amazonas, a second species of this genus was found. It is here described as Honduriella mcmurtryi Demite n. sp., based on morphological characteristics of adult females and males. Honduriella maxima is redescribed based on an examination of the holotype. In order to accommodate the new species, a modified characterisation of Honduriella is given.


Assuntos
Ácaros e Carrapatos , Animais , Brasil , Dinamarca , Feminino , Florestas , Masculino
13.
Arthropod Struct Dev ; 44(4): 313-25, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25958124

RESUMO

Low temperature scanning electron microscopy (LT-SEM) has revealed anatomical details suggesting that Osperalycus and Gordialycus (Acariformes: Nematalycidae) have an unusual feeding apparatus that is hypothesized to be specialized for feeding on the fluid contents of small microorganisms (diameter<5 µm). Both mite genera have a feeding strategy that appears to involve picking up small microorganisms and placing them onto the subcapitulum for puncturing. However, they have slightly different variants of the same basic rupturing mechanism. Whereas Gordialycus has evolved expansive and convergent rutella to hold the microorganisms in place while pushing chelicerae into them, Osperalycus has evolved a pouch into which a microorganism is inserted. The rutella reinforce this pouch while the chelicerae break up the microorganism. Both types of mouthpart apparatus seem to be adapted to minimize waste, an appropriate specialization given the organically impoverished habitats in which these mites live.


Assuntos
Ácaros e Carrapatos/fisiologia , Ácaros e Carrapatos/ultraestrutura , Ácaros e Carrapatos/crescimento & desenvolvimento , Animais , Comportamento Alimentar , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/ultraestrutura , Microscopia Eletrônica de Varredura , Boca/ultraestrutura , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Ninfa/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA