Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 30(23): 2300-2314, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34245260

RESUMO

Here, we report on six unrelated individuals, all presenting with early-onset global developmental delay, associated with impaired motor, speech and cognitive development, partly with developmental epileptic encephalopathy and physical dysmorphisms. All individuals carry heterozygous missense variants of KCND2, which encodes the voltage-gated potassium (Kv) channel α-subunit Kv4.2. The amino acid substitutions associated with the variants, p.(Glu323Lys) (E323K), p.(Pro403Ala) (P403A), p.(Val404Leu) (V404L) and p.(Val404Met) (V404M), affect sites known to be critical for channel gating. To unravel their likely pathogenicity, recombinant mutant channels were studied in the absence and presence of auxiliary ß-subunits under two-electrode voltage clamp in Xenopus oocytes. All channel mutants exhibited slowed and incomplete macroscopic inactivation, and the P403A variant in addition slowed activation. Co-expression of KChIP2 or DPP6 augmented the functional expression of both wild-type and mutant channels; however, the auxiliary ß-subunit-mediated gating modifications differed from wild type and among mutants. To simulate the putative setting in the affected individuals, heteromeric Kv4.2 channels (wild type + mutant) were studied as ternary complexes (containing both KChIP2 and DPP6). In the heteromeric ternary configuration, the E323K variant exhibited only marginal functional alterations compared to homomeric wild-type ternary, compatible with mild loss-of-function. By contrast, the P403A, V404L and V404M variants displayed strong gating impairment in the heteromeric ternary configuration, compatible with loss-of-function or gain-of-function. Our results support the etiological involvement of Kv4.2 channel gating impairment in early-onset monogenic global developmental delay. In addition, they suggest that gain-of-function mechanisms associated with a substitution of V404 increase epileptic seizure susceptibility.


Assuntos
Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/metabolismo , Variação Genética , Ativação do Canal Iônico , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Alelos , Substituição de Aminoácidos , Biomarcadores , Deficiências do Desenvolvimento/diagnóstico , Suscetibilidade a Doenças , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Fenótipo , Subunidades Proteicas , Canais de Potássio Shal/química
2.
J Hum Genet ; 68(9): 607-613, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37106064

RESUMO

WLS (Wnt ligand secretion mediator or Wntless) orchestrates the secretion of all Wnt proteins, a family of evolutionary conserved proteins, involved in Wnt signaling pathway that has many essential biological functions including the regulation of development, cell proliferation, migration and apoptosis. Biallelic variants in WLS have recently been described in 10 patients with pleiotropic multiple congenital anomalies (MCA) known as Zaki syndrome. We identified a likely disease-causing variant in WLS (c.1579G>A, p.Gly527Arg) in a boy presented with a broad range of MCA including microcephaly, facial dysmorphism, alopecia, ophthalmologic anomalies, and complete soft tissue syndactyly. These features were reminiscent of Zaki syndrome although variable clinical severity was observed. In a detailed clinical assessment, our patient also displayed microphthalmia, dental anomalies, skeletal dysplasia with spontaneous fractures and Dandy-Walker malformation. As such, we extend the phenotype linked to Zaki syndrome. This study further highlights the importance of a thorough clinical evaluation to delineate the phenotypic spectrum associated with WLS variants and suggests that genotype-phenotype correlations due to variant localization seems likely. However, future work on additional patients and more functional studies may give further insights into genotype-phenotype correlations and the complex function of WLS.


Assuntos
Receptores Acoplados a Proteínas G , Apoptose , Fenótipo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Humanos
3.
J Hum Genet ; 67(1): 55-64, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34354232

RESUMO

Biallelic pathogenic variants of OTUD6B have recently been described to cause intellectual disability (ID) with seizures. Here, we report the clinical and molecular characterization of five additional patients (from two unrelated Egyptian families) with ID due to homozygous OTUD6B variants. In Family I, the two affected brothers had additional retinal degeneration, a symptom not yet reported in OTUD6B-related ID. Whole-exome sequencing (WES) identified a novel nonsense variant in OTUD6B (c.271C>T, p.(Gln91Ter)), but also a nonsense variant in RP1L1 (c.5959C>T, p.(Gln1987Ter)), all in homozygous state. Biallelic pathogenic variants in RP1L1 cause autosomal recessive retinitis pigmentosa type 88 (RP88). Thus, RP1L1 dysfunction likely accounts for the visual phenotype in this family with two simultaneous autosomal recessive disorders. In Family II, targeted sequencing revealed a novel homozygous missense variant (c.767G>T, p.(Gly256Val)), confirming the clinically suspected OTUD6B-related ID. Consistent with the clinical variability in previously reported OTUD6B patients, our patients showed inter- and intrafamilial differences with regard to the clinical and brain imaging findings. Interestingly, various orodental features were present including macrodontia, dental crowding, abnormally shaped teeth, and thick alveolar ridges. Broad distal phalanges (especially the thumbs and halluces) with prominent interphalangeal joints and fetal pads were recognized in all patients and hence considered pathognomonic. Our study extends the spectrum of the OTUD6B-associated phenotype. Retinal degeneration, albeit present in both patients from Family I, was shown to be unrelated to OTUD6B, demonstrating the need for in-depth analysis of WES data in consanguineous families to uncover simultaneous autosomal recessive disorders.


Assuntos
Endopeptidases/genética , Predisposição Genética para Doença , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Mutação , Fenótipo , Alelos , Estudos de Associação Genética , Genótipo , Humanos , Degeneração Retiniana/genética , Sequenciamento do Exoma
4.
Kidney Int ; 100(5): 1092-1100, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34153329

RESUMO

Biallelic deletions in the NPHP1 gene are the most frequent molecular defect of nephronophthisis, a kidney ciliopathy and leading cause of hereditary end-stage kidney disease. Nephrocystin 1, the gene product of NPHP1, is also expressed in photoreceptors where it plays an important role in intra-flagellar transport between the inner and outer segments. However, the human retinal phenotype has never been investigated in detail. Here, we characterized retinal features of 16 patients with homozygous deletions of the entire NPHP1 gene. Retinal assessment included multimodal imaging (optical coherence tomography, fundus autofluorescence) and visual function testing (visual acuity, full-field electroretinography, color vision, visual field). Fifteen patients had a mild retinal phenotype that predominantly affected cones, but with relative sparing of the fovea. Despite a predominant cone dysfunction, night vision problems were an early symptom in some cases. The consistent retinal phenotype on optical coherence tomography images included reduced reflectivity and often a granular appearance of the ellipsoid zone, fading or loss of the interdigitation zone, and mild outer retinal thinning. However, there were usually no obvious structural changes visible upon clinical examination and fundus autofluorescence imaging (occult retinopathy). More advanced retinal degeneration might occur with ageing. An identified additional CEP290 variant in one patient with a more severe retinal degeneration may indicate a potential role for genetic modifiers, although this requires further investigation. Thus, diagnostic awareness about this distinct retinal phenotype has implications for the differential diagnosis of nephronophthisis and for individual prognosis of visual function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/genética , Doenças Renais Císticas/genética , Doenças Retinianas , Eletrorretinografia , Angiofluoresceinografia , Humanos , Doenças Retinianas/genética , Tomografia de Coerência Óptica , Campos Visuais
5.
Klin Monbl Augenheilkd ; 238(3): 261-266, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33784789

RESUMO

Over the past decade, novel high-throughput DNA sequencing technologies have revolutionised both research and diagnostic testing for monogenic disorders. This applies particularly to genetically very heterogeneous disorders like retinal dystrophies (RDs). Next-generation sequencing (NGS) today is considered as reliable as Sanger sequencing, which had been the gold standard for decades. Today, comprehensive NGS-based diagnostic testing reveals the causative mutations in the majority of RD patients, with important implications for genetic counselling for recurrence risks and personalised medical management (from interdisciplinary surveillance to prophylactic measures and, albeit yet rare, [gene] therapy). While DNA sequencing is - in most cases - no longer the diagnostic bottleneck, one needs to be aware of interpretation pitfalls and dead ends. The advent of new (NGS) technologies will solve some of these issues. However, specialised medical geneticists who are familiar with the peculiarities of certain RD genes and closely interact with ophthalmologists will remain key to successful RD research and diagnostic testing for the benefit of the patients. This review sheds light on the current state of the field, its challenges and potential solutions.


Assuntos
Distrofias Retinianas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação/genética , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Análise de Sequência de DNA
6.
FASEB J ; 33(10): 11507-11527, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31345061

RESUMO

We previously reported that inactivation of the transmembrane taurine transporter (TauT or solute carrier 6a6) causes early retinal degeneration in mice. Compatible with taurine's indispensability for cell volume homeostasis, protein stabilization, cytoprotection, antioxidation, and immuno- and neuromodulation, mice develop multisystemic dysfunctions (hearing loss; liver fibrosis; and behavioral, heart, and skeletal muscle abnormalities) later on. Here, by genetic, cell biologic, in vivo1H-magnetic resonance spectroscopy and molecular dynamics simulation studies, we conducted in-depth characterization of a novel disorder: human TAUT deficiency. Loss of TAUT function due to a homozygous missense mutation caused panretinal degeneration in 2 brothers. TAUTp.A78E still localized in the plasma membrane but is predicted to impact structural stabilization. 3H-taurine uptake by peripheral blood mononuclear cells was reduced by 95%, and taurine levels were severely reduced in plasma, skeletal muscle, and brain. Extraocular dysfunctions were not yet detected, but significantly increased urinary excretion of 8-oxo-7,8-dihydroguanosine indicated generally enhanced (yet clinically unapparent) oxidative stress and RNA oxidation, warranting continuous broad surveillance.-Preising, M. N., Görg, B., Friedburg, C., Qvartskhava, N., Budde, B. S., Bonus, M., Toliat, M. R., Pfleger, C., Altmüller, J., Herebian, D., Beyer, M., Zöllner, H. J., Wittsack, H.-J., Schaper, J., Klee, D., Zechner, U., Nürnberg, P., Schipper, J., Schnitzler, A., Gohlke, H., Lorenz, B., Häussinger, D., Bolz, H. J. Biallelic mutation of human SLC6A6 encoding the taurine transporter TAUT is linked to early retinal degeneration.


Assuntos
Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Mutação de Sentido Incorreto/genética , Degeneração Retiniana/metabolismo , Taurina/metabolismo , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Guanosina/análogos & derivados , Guanosina/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo/fisiologia
7.
Klin Monbl Augenheilkd ; 237(3): 239-247, 2020 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-32182628

RESUMO

The Bardet-Biedl syndrome (BBS) is a rare inherited ciliopathy, which is accompanied by retinal disease, i.e. rod-cone dystrophy (retinitis pigmentosa, RP) and other symptoms, especially truncal obesity, polydactyly, renal abnormalities as well as reduced intelligence or learning difficulties. 25 BBS genes are currently known, and these are responsible for the structure and function of primary cilia. Because ciliary integrity is crucial for numerous pathways of developmental signaling, their dysfunction may cause multisystemic disorders - like BBS. Physicians benefit greatly from new molecular genetic methods that have made genetically heterogeneous conditions diagnostically accessible: By next-generation sequencing (NGS), all BBS-associated genes can be analysed simultaneously in a gene panel. As regards the retinal phenotype, genotype-phenotype correlations are not significant. Besides classical autosomal recessive inheritance, oligogenic/triallelic traits have been reported, but these seem to play a minor role, if any (as a growing number of large-scale NGS-based studies suggests). In the absence of causal therapy, the mainstay of ophthalmological endeavour is focused on visual rehabilitation with low vision aids, use of the white cane and training to develop everyday life skills.


Assuntos
Síndrome de Bardet-Biedl , Retinose Pigmentar , Seguimentos , Estudos de Associação Genética , Humanos , Fenótipo
8.
J Transl Med ; 17(1): 351, 2019 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655630

RESUMO

BACKGROUND: Biallelic PTPRQ pathogenic variants have been previously reported as causative for autosomal recessive non-syndromic hearing loss. In 2018 the first heterozygous PTPRQ variant has been implicated in the development of autosomal dominant non-syndromic hearing loss (ADNSHL) in a German family. The study presented the only, so far known, PTPRQ pathogenic variant (c.6881G>A) in ADNSHL. It is located in the last PTPRQ coding exon and introduces a premature stop codon (p.Trp2294*). METHODS: A five-generation Polish family with ADNSHL was recruited for the study (n = 14). Thorough audiological, neurotological and imaging studies were carried out to precisely define the phenotype. Genomic DNA was isolated from peripheral blood samples or buccal swabs of available family members. Clinical exome sequencing was conducted for the proband. Family segregation analysis of the identified variants was performed using Sanger sequencing. Single nucleotide polymorphism array on DNA samples from the Polish and the original German family was used for genome-wide linkage analysis. RESULTS: Combining clinical exome sequencing and family segregation analysis, we have identified the same (NM_001145026.2:c.6881G>A, NP_001138498.1:p.Trp2294*) PTPRQ alteration in the Polish ADNSHL family. Using genome-wide linkage analysis, we found that the studied family and the original German family derive from a common ancestor. Deep phenotyping of the affected individuals showed that in contrast to the recessive form, the PTPRQ-related ADNSHL is not associated with vestibular dysfunction. In both families ADNSHL was progressive, affected mainly high frequencies and had a variable age of onset. CONCLUSION: Our data provide the first confirmation of PTPRQ involvement in ADNSHL. The finding strongly reinforces the inclusion of PTPRQ to the small set of genes leading to both autosomal recessive and dominant hearing loss.


Assuntos
Perda Auditiva Neurossensorial/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Adolescente , Adulto , Idade de Início , Criança , Feminino , Genes Dominantes , Perda Auditiva Neurossensorial/fisiopatologia , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/fisiologia , Mutação , Linhagem , Terminação Traducional da Cadeia Peptídica/genética , Fenótipo , Polônia , Polimorfismo de Nucleotídeo Único , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/fisiologia , Pesquisa Translacional Biomédica , Adulto Jovem
9.
Clin Exp Ophthalmol ; 47(6): 779-786, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30977268

RESUMO

IMPORTANCE: Uncommon characteristics in genetically unsolved retinitis pigmentosa (RP) patients may indicate an incorrect clinical diagnosis or as yet unknown genetic causes resulting in specific retinal phenotypes. The diagnostic yield of targeted next-generation sequencing may be increased by a reasonable preselection of RP-patients. BACKGROUND: To systematically evaluate and compare features of genetically solved and unsolved RP-patients. DESIGN: Retrospective, observational study. PARTICIPANTS: One-hundred and twelve consecutive RP-patients who underwent extensive molecular genetic analysis. METHODS: Characterization of patients based on multimodal imaging and medical history. MAIN OUTCOME MEASURES: Differences between genetically solved and unsolved RP-patients. RESULTS: Compared to genetically solved patients (n = 77), genetically unsolved patients (n = 35) more frequently had an age of disease-onset above 30 years (60% vs 8%; P < 0.0001), showed atypical fundus features (49% vs 8%; P < 0. 0001) and indicators for phenocopies (eg, autoimmune diseases) (17% vs 0%; P < 0. 001). Evidence for a particular inheritance pattern was less common (20% vs 49%; P < 0. 01). The diagnostic yield was 84% (71/85) in patients with first symptoms below 30 years-of-age, compared to 69% (77/112) in the overall cohort. The other selection criteria alone or in combination resulted in limited further increase of the diagnostic yield (up to 89%) while excluding considerably more patients (up to 56%) from genetic testing. CONCLUSIONS AND RELEVANCE: The medical history and retinal phenotype differ between genetically solved and a subgroup of unsolved RP-patients, which may reflect undetected genotypes or retinal conditions mimicking RP. Patient stratification may inform on the individual likelihood of identifying disease-causing mutations and may impact patient counselling.


Assuntos
Testes Genéticos , Retinose Pigmentar/diagnóstico , Adulto , Eletrorretinografia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Retinose Pigmentar/genética , Retinose Pigmentar/fisiopatologia , Estudos Retrospectivos , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia , Campos Visuais/fisiologia
10.
Genet Med ; 20(6): 614-621, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29309402

RESUMO

PurposeHearing loss is genetically extremely heterogeneous, making it suitable for next-generation sequencing (NGS). We identified a four-generation family with nonsyndromic mild to severe hearing loss of the mid- to high frequencies and onset from early childhood to second decade in seven members.MethodsNGS of 66 deafness genes, Sanger sequencing, genome-wide linkage analysis, whole-exome sequencing (WES), semiquantitative reverse-transcriptase polymerase chain reaction.ResultsWe identified a heterozygous nonsense mutation, c.6881G>A (p.Trp2294*), in the last coding exon of PTPRQ. PTPRQ has been linked with recessive (DFNB84A), but not dominant deafness. NGS and Sanger sequencing of all exons (including alternatively spliced 5' and N-scan-predicted exons of a putative "extended" transcript) did not identify a second mutation. The highest logarithm of the odds score was in the PTPRQ-containing region on chromosome 12, and p.Trp2294* cosegregated with hearing loss. WES did not identify other cosegregating candidate variants from the mapped region. PTPRQ expression in patient fibroblasts indicated that the mutant allele escapes nonsense-mediated decay (NMD).ConclusionKnown PTPRQ mutations are recessive and do not affect the C-terminal exon. In contrast to recessive loss-of-function mutations, c.6881G>A transcripts may escape NMD. PTPRQTrp2294* protein would lack only six terminal residues and could exert a dominant-negative effect, a possible explanation for allelic deafness, DFNA73, clinically and genetically distinct from DFNB84A.


Assuntos
Surdez/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Sequência de Aminoácidos , Códon sem Sentido/genética , Exoma/genética , Éxons/genética , Família , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Perda Auditiva/genética , Humanos , Masculino , Mutação , Linhagem , Sequenciamento do Exoma
11.
Klin Monbl Augenheilkd ; 235(3): 258-263, 2018 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-29390234

RESUMO

Within a few years, high-throughput sequencing (next-generation sequencing, NGS) has become a routine method in genetic diagnostics and has largely replaced conventional Sanger sequencing. The complexity of NGS data requires sound bioinformatic analysis: pinpointing the disease-causing variants may be difficult, and erroneous interpretations must be avoided. When looking at the group of retinal dystrophies as an example of eye disorders with extensive genetic heterogeneity, one can clearly say that NGS-based diagnostics yield important information for most patients and physicians, and that it has furthered our knowledge significantly. Furthermore, NGS has accelerated ophthalmogenetic research aimed at the identification of novel eye disease genes.


Assuntos
Oftalmopatias/diagnóstico , Oftalmopatias/genética , Sequenciamento de Nucleotídeos em Larga Escala/tendências , Oftalmologia/tendências , Análise de Sequência de DNA/tendências , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular , Alelos , Alelopatia/genética , Diagnóstico Diferencial , Proteínas do Olho/genética , Estudos de Associação Genética , Proteínas Associadas aos Microtúbulos/genética , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Sensibilidade e Especificidade , Proteínas Supressoras de Tumor/genética , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética
12.
Hum Mol Genet ; 24(9): 2594-603, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25616960

RESUMO

Determination of variant pathogenicity represents a major challenge in the era of high-throughput sequencing. Erroneous categorization may result if variants affect genes that are in fact dispensable. We demonstrate that this also applies to rare, apparently unambiguous truncating mutations of an established disease gene. By whole-exome sequencing (WES) in a consanguineous family with congenital non-syndromic deafness, we unexpectedly identified a homozygous nonsense variant, p.Arg1066*, in AHI1, a gene associated with Joubert syndrome (JBTS), a severe recessive ciliopathy. None of four homozygotes expressed any signs of JBTS, and one of them had normal hearing, which also ruled out p.Arg1066* as the cause of deafness. Homozygosity mapping and WES in the only other reported JBTS family with a homozygous C-terminal truncation (p.Trp1088Leufs*16) confirmed AHI1 as disease gene, but based on a more N-terminal missense mutation impairing WD40-repeat formation. Morpholinos against N-terminal zebrafish Ahi1, orthologous to where human mutations cluster, produced a ciliopathy, but targeting near human p.Arg1066 and p.Trp1088 did not. Most AHI1 mutations in JBTS patients result in truncated protein lacking WD40-repeats and the SH3 domain; disease was hitherto attributed to loss of these protein interaction modules. Our findings indicate that normal development does not require the C-terminal SH3 domain. This has far-reaching implications, considering that variants like p.Glu984* identified by preconception screening ('Kingsmore panel') do not necessarily indicate JBTS carriership. Genomes of individuals with consanguineous background are enriched for homozygous variants that may unmask dispensable regions of disease genes and unrecognized false positives in diagnostic large-scale sequencing and preconception carrier screening.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Estudos de Associação Genética , Mutação , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transporte Vesicular , Animais , Encéfalo/patologia , Cerebelo/anormalidades , Mapeamento Cromossômico , Consanguinidade , Análise Mutacional de DNA , Modelos Animais de Doenças , Evolução Molecular , Exoma , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Feminino , Ordem dos Genes , Genes Recessivos , Loci Gênicos , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Imageamento por Ressonância Magnética , Masculino , Modelos Moleculares , Linhagem , Conformação Proteica , Retina/anormalidades , Peixe-Zebra/genética
13.
Hum Mutat ; 37(2): 170-4, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26593283

RESUMO

Deafblindness is part of several genetic disorders. We investigated a consanguineous Egyptian family with two siblings affected by congenital hearing loss and retinal degeneration, initially diagnosed as Usher syndrome type 1. At teenage, severe enamel dysplasia, developmental delay, and microcephaly became apparent. Genome-wide homozygosity mapping and whole-exome sequencing detected a homozygous missense mutation, c.1238G>T (p.Gly413Val), affecting a highly conserved residue of peroxisomal biogenesis factor 6, PEX6. Biochemical profiling of the siblings revealed abnormal and borderline plasma phytanic acid concentration, and cerebral imaging revealed white matter disease in both. We show that Pex6 localizes to the apical extensions of secretory ameloblasts and differentiated odontoblasts at early stages of dentin synthesis in mice, and to cilia of retinal photoreceptor cells. We propose PEX6, and possibly other peroxisomal genes, as candidate for the rare cooccurrence of deafblindness and enamel dysplasia. Our study for the first time links peroxisome biogenesis disorders to retinal ciliopathies.


Assuntos
Adenosina Trifosfatases/genética , Surdocegueira/genética , Hipoplasia do Esmalte Dentário/genética , Microcefalia/genética , Mutação de Sentido Incorreto , Degeneração Retiniana/genética , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/metabolismo , Ameloblastos/metabolismo , Ameloblastos/patologia , Sequência de Aminoácidos , Animais , Criança , Cílios/metabolismo , Cílios/patologia , Consanguinidade , Surdocegueira/metabolismo , Surdocegueira/patologia , Hipoplasia do Esmalte Dentário/metabolismo , Hipoplasia do Esmalte Dentário/patologia , Feminino , Expressão Gênica , Homozigoto , Humanos , Masculino , Camundongos , Microcefalia/metabolismo , Microcefalia/patologia , Dados de Sequência Molecular , Odontoblastos/metabolismo , Odontoblastos/patologia , Linhagem , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Irmãos , Substância Branca/metabolismo , Substância Branca/patologia , Adulto Jovem
14.
Hum Mol Genet ; 22(11): 2177-85, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23418306

RESUMO

Mutations affecting the integrity and function of cilia have been identified in various genes over the last decade accounting for a group of diseases called ciliopathies. Ciliopathies display a broad spectrum of phenotypes ranging from mild manifestations to lethal combinations of multiple severe symptoms and most of them share cystic kidneys as a common feature. Our starting point was a consanguineous pedigree with three affected fetuses showing an early embryonic phenotype with enlarged cystic kidneys, liver and pancreas and developmental heart disease. By genome-wide linkage analysis, we mapped the disease locus to chromosome 17q11 and identified a homozygous nonsense mutation in NEK8/NPHP9 that encodes a kinase involved in ciliary dynamics and cell cycle progression. Missense mutations in NEK8/NPHP9 have been identified in juvenile cystic kidney jck mice and in patients suffering from nephronophthisis (NPH), an autosomal-recessive cystic kidney disease. This work confirmed a complete loss of NEK8 expression in the affected fetuses due to nonsense-mediated decay. In cultured fibroblasts derived from these fetuses, the expression of prominent polycystic kidney disease genes (PKD1 and PKD2) was decreased, whereas the oncogene c-MYC was upregulated, providing potential explanations for the observed renal phenotype. We furthermore linked NEK8 with NPHP3, another NPH protein known to cause a very similar phenotype in case of null mutations. Both proteins interact and activate the Hippo effector TAZ. Taken together, our study demonstrates that NEK8 is essential for organ development and that the complete loss of NEK8 perturbs multiple signalling pathways resulting in a severe early embryonic phenotype.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Síndrome de Dandy-Walker/genética , Síndrome de Dandy-Walker/metabolismo , Regulação da Expressão Gênica , Mutação , Cisto Pancreático/genética , Cisto Pancreático/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais , Anormalidades Múltiplas/patologia , Linhagem Celular , Consanguinidade , Síndrome de Dandy-Walker/patologia , Feminino , Feto/anormalidades , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Via de Sinalização Hippo , Humanos , Masculino , Quinases Relacionadas a NIMA , Cisto Pancreático/patologia , Linhagem , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
15.
Ophthalmology ; 122(8): 1555-62, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26077580

RESUMO

PURPOSE: To investigate the association of reticular pseudodrusen (RPD) with Sorsby fundus dystrophy (SFD). DESIGN: Prospective, monocenter, cross-sectional case series. SUBJECTS: Sixteen patients of 4 unrelated families with SFD caused by mutations in TIMP3. METHODS: All subjects underwent multimodal imaging including near-infrared (NIR) reflectance and fundus autofluorescence with a confocal scanning laser ophthalmoscope and spectral-domain optical coherence tomography (SD OCT). MAIN OUTCOME MEASURES: Prevalence, topographic distribution, and phenotype of RPD. RESULTS: Mean age of the investigated patients was 56.8 years (range, 23-78 years). Reticular pseudodrusen were identified frequently in SFD patients in the sixth decade of life (5 of 7 [71%]) and were absent in younger (n = 3) or older (n = 6) patients. They were most abundant in the superior quadrant and spared the foveal region. Reticular pseudodrusen appeared as yellowish round to oval (dot subtype; n = 5) or confluent, wriggled (ribbon subtype; n = 3) lesions, sometimes forming irregular networks. Reticular pseudodrusen were hyporeflective on NIR reflectance and hypofluorescent on fundus autofluorescence imaging. They appeared as subretinal deposits on SD OCT imaging. Other lesions, such as peripheral pseudodrusen and soft drusen, were present less frequently. CONCLUSIONS: Reticular pseudodrusen are a frequent finding in patients with SFD. Although SFD patients with RPD are younger, distribution and phenotype of RPD are similar to those observed in patients with age-related macular degeneration. The association of RPD with SFD implicates a role of Bruch's membrane, the Bruch's membrane-retinal pigment epithelium interface, or both in the pathogenesis of RPD.


Assuntos
Braquidactilia/complicações , Lâmina Basilar da Corioide/patologia , Coloboma/complicações , Drusas Retinianas/etiologia , Epitélio Pigmentado da Retina/patologia , Adulto , Idoso , Braquidactilia/genética , Coloboma/genética , Estudos Transversais , Feminino , Angiofluoresceinografia , Humanos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Imagem Multimodal , Mutação , Oftalmoscopia , Imagem Óptica , Prevalência , Estudos Prospectivos , Drusas Retinianas/diagnóstico , Inibidor Tecidual de Metaloproteinase-3/genética , Tomografia de Coerência Óptica , Adulto Jovem
16.
Hum Mutat ; 35(5): 565-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24616153

RESUMO

MYO1A is considered the gene underlying autosomal dominant nonsyndromic hearing loss DFNA48, based on six missense variants, one small in-frame insertion, and one nonsense mutation. Results from NGS targeting 66 deafness genes in 109 patients identified three families challenging this assumption: two novel nonsense (p.Tyr740* and p.Arg262*) and a known missense variant were identified heterozygously not only in index patients, but also in unaffected relatives. Deafness in these families clearly resulted from mutations in other genes (MYO7A, EYA1, and CIB2). Most of the altogether 10 MYO1A mutations are annotated in dbSNP, and population frequencies (dbSNP, 1000 Genomes, Exome Sequencing Project) above 0.1% contradict pathogenicity under a dominant model. One healthy individual was even homozygous for p.Arg262*, compatible with homozygous Myo1a knockout mice lacking any overt pathology. MYO1A seems dispensable for hearing and overall nonessential. MYO1A adds to the list of "erroneous disease genes", which will expand with increasing availability of large-scale sequencing data.


Assuntos
Predisposição Genética para Doença , Perda Auditiva Neurossensorial/genética , Mutação de Sentido Incorreto , Cadeias Pesadas de Miosina/genética , Miosina Tipo I/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Bases de Dados Genéticas , Feminino , Perda Auditiva Neurossensorial/etiologia , Perda Auditiva Neurossensorial/patologia , Humanos , Lactente , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único
17.
Hum Mutat ; 35(10): 1153-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25044745

RESUMO

We describe a consanguineous Iraqi family with Leber congenital amaurosis (LCA), Joubert syndrome (JBTS), and polycystic kidney disease (PKD). Targeted next-generation sequencing for excluding mutations in known LCA and JBTS genes, homozygosity mapping, and whole-exome sequencing identified a homozygous missense variant, c.317G>C (p.Arg106Pro), in POC1B, a gene essential for ciliogenesis, basal body, and centrosome integrity. In silico modeling suggested a requirement of p.Arg106 for the formation of the third WD40 repeat and a protein interaction interface. In human and mouse retina, POC1B localized to the basal body and centriole adjacent to the connecting cilium of photoreceptors and in synapses of the outer plexiform layer. Knockdown of Poc1b in zebrafish caused cystic kidneys and retinal degeneration with shortened and reduced photoreceptor connecting cilia, compatible with the human syndromic ciliopathy. A recent study describes homozygosity for p.Arg106ProPOC1B in a family with nonsyndromic cone-rod dystrophy. The phenotype associated with homozygous p.Arg106ProPOC1B may thus be highly variable, analogous to homozygous p.Leu710Ser in WDR19 causing either isolated retinitis pigmentosa or Jeune syndrome. Our study indicates that POC1B is required for retinal integrity, and we propose POC1B mutations as a probable cause for JBTS with severe PKD.


Assuntos
Proteínas de Ciclo Celular/genética , Doenças Cerebelares/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Mutação , Retina/anormalidades , Anormalidades Múltiplas , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/metabolismo , Doenças Cerebelares/metabolismo , Doenças Cerebelares/patologia , Cerebelo/anormalidades , Criança , Cílios/metabolismo , Cílios/ultraestrutura , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Técnicas de Silenciamento de Genes , Humanos , Iraque , Rim/patologia , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Linhagem , Retina/metabolismo , Retina/patologia , Peixe-Zebra
18.
Am J Hum Genet ; 88(3): 362-71, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21353196

RESUMO

Osteogenesis imperfecta (OI) is a heterogeneous genetic disorder characterized by bone fragility and susceptibility to fractures after minimal trauma. After mutations in all known OI genes had been excluded by Sanger sequencing, we applied next-generation sequencing to analyze the exome of a single individual who has a severe form of the disease and whose parents are second cousins. A total of 26,922 variations from the human reference genome sequence were subjected to several filtering steps. In addition, we extracted the genotypes of all dbSNP130-annotated SNPs from the exome sequencing data and used these 299,494 genotypes as markers for the genome-wide identification of homozygous regions. A single homozygous truncating mutation, affecting SERPINF1 on chromosome 17p13.3, that was embedded into a homozygous stretch of 2.99 Mb remained. The mutation was also homozygous in the affected brother of the index patient. Subsequently, we identified homozygosity for two different truncating SERPINF1 mutations in two unrelated patients with OI and parental consanguinity. All four individuals with SERPINF1 mutations have severe OI. Fractures of long bones and severe vertebral compression fractures with resulting deformities were observed as early as the first year of life in these individuals. Collagen analyses with cultured dermal fibroblasts displayed no evidence for impaired collagen folding, posttranslational modification, or secretion. SERPINF1 encodes pigment epithelium-derived factor (PEDF), a secreted glycoprotein of the serpin superfamily. PEDF is a multifunctional protein and one of the strongest inhibitors of angiogenesis currently known in humans. Our data provide genetic evidence for PEDF involvement in human bone homeostasis.


Assuntos
Éxons/genética , Proteínas do Olho/genética , Genes Recessivos/genética , Mutação/genética , Fatores de Crescimento Neural/genética , Osteogênese Imperfeita/genética , Serpinas/genética , Adolescente , Sequência de Bases , Criança , Pré-Escolar , Análise Mutacional de DNA , Homozigoto , Humanos , Lactente , Dados de Sequência Molecular , Osteogênese Imperfeita/diagnóstico por imagem , Radiografia
19.
Am J Hum Genet ; 89(6): 713-30, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22152675

RESUMO

Joubert syndrome related disorders (JSRDs) have broad but variable phenotypic overlap with other ciliopathies. The molecular etiology of this overlap is unclear but probably arises from disrupting common functional module components within primary cilia. To identify additional module elements associated with JSRDs, we performed homozygosity mapping followed by next-generation sequencing (NGS) and uncovered mutations in TMEM237 (previously known as ALS2CR4). We show that loss of the mammalian TMEM237, which localizes to the ciliary transition zone (TZ), results in defective ciliogenesis and deregulation of Wnt signaling. Furthermore, disruption of Danio rerio (zebrafish) tmem237 expression produces gastrulation defects consistent with ciliary dysfunction, and Caenorhabditis elegans jbts-14 genetically interacts with nphp-4, encoding another TZ protein, to control basal body-TZ anchoring to the membrane and ciliogenesis. Both mammalian and C. elegans TMEM237/JBTS-14 require RPGRIP1L/MKS5 for proper TZ localization, and we demonstrate additional functional interactions between C. elegans JBTS-14 and MKS-2/TMEM216, MKSR-1/B9D1, and MKSR-2/B9D2. Collectively, our findings integrate TMEM237/JBTS-14 in a complex interaction network of TZ-associated proteins and reveal a growing contribution of a TZ functional module to the spectrum of ciliopathy phenotypes.


Assuntos
Doenças Cerebelares/genética , Cílios/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Mutação , Anormalidades Múltiplas , Adulto , Animais , Síndrome de Bardet-Biedl/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestrutura , Estudos de Casos e Controles , Linhagem Celular , Cerebelo/anormalidades , Criança , Pré-Escolar , Mapeamento Cromossômico , Cílios/metabolismo , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Estudos de Associação Genética , Haplótipos , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Complexos Multiproteicos/metabolismo , Polimorfismo de Nucleotídeo Único , Retina/anormalidades , Análise de Sequência de DNA , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Peixe-Zebra/embriologia , Peixe-Zebra/genética
20.
Pediatr Nephrol ; 29(8): 1451-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24504730

RESUMO

BACKGROUND: An emerging number of clinically and genetically heterogeneous diseases now collectively termed ciliopathies have been connected to the dysfunction of primary cilia. We describe an 8-year-old girl with a complex phenotype that did not clearly match any familiar syndrome. CASE-DIAGNOSIS/TREATMENT: Hypotonia, facial dysmorphism and retardation were noted shortly after birth. Other features included short stature, mild skeletal anomalies, strabism, deafness, subdural hygroma, hepatosplenomegaly and end-stage renal failure. Renal biopsy revealed tubular atrophy, interstitial fibrosis and segmental glomerulosclerosis. After exclusion of a chromosomal abnormality by array-comparative genomic hybridization (CGH), we performed next-generation sequencing (NGS) using a customized panel that targeted 131 genes known or hypothesized to cause ciliopathies. We identified the novel homozygous WDR19 mutation c.1483G > C (p.Gly495Arg) that affects an evolutionarily highly conserved residue in the intraflagellar transport protein IFT144, is absent from databases and is predicted to be pathogenic by all bioinformatic sources used. CONCLUSION: Mutations in WDR19 encoding the intraflagellar transport component IFT144 have recently been described in single families with the clinically overlapping skeletal ciliopathies Jeune and Sensenbrenner syndromes, combined or isolated nephronophthisis (NPHP) and retinitis pigmentosa (RP) (Senior-Loken syndrome). Our patient emphasizes the usefulness and efficiency of a comprehensive NGS panel approach in patients with unclassified ciliopathies. It further suggests that WDR19 mutations can cause a broad spectrum of ciliopathies that extends to Jeune and Sensenbrenner syndromes, RP and renal NPHP-like phenotypes.


Assuntos
Cílios/patologia , Nefropatias/genética , Proteínas/genética , Criança , Proteínas do Citoesqueleto , Éxons/genética , Feminino , Crescimento/fisiologia , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Nefropatias/patologia , Mutação/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA