Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Hum Mol Genet ; 31(3): 440-454, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34505148

RESUMO

Recently, others and we identified de novo FBXO11 (F-Box only protein 11) variants as causative for a variable neurodevelopmental disorder (NDD). We now assembled clinical and mutational information on 23 additional individuals. The phenotypic spectrum remains highly variable, with developmental delay and/or intellectual disability as the core feature and behavioral anomalies, hypotonia and various facial dysmorphism as frequent aspects. The mutational spectrum includes intragenic deletions, likely gene disrupting and missense variants distributed across the protein. To further characterize the functional consequences of FBXO11 missense variants, we analyzed their effects on protein expression and localization by overexpression of 17 different mutant constructs in HEK293 and HeLa cells. We found that the majority of missense variants resulted in subcellular mislocalization and/or reduced FBXO11 protein expression levels. For instance, variants located in the nuclear localization signal and the N-terminal F-Box domain lead to altered subcellular localization with exclusion from the nucleus or the formation of cytoplasmic aggregates and to reduced protein levels in western blot. In contrast, variants localized in the C-terminal Zn-finger UBR domain lead to an accumulation in the cytoplasm without alteration of protein levels. Together with the mutational data, our functional results suggest that most missense variants likely lead to a loss of the original FBXO11 function and thereby highlight haploinsufficiency as the most likely disease mechanism for FBXO11-associated NDDs.


Assuntos
Proteínas F-Box , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteínas F-Box/genética , Células HEK293 , Células HeLa , Humanos , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Proteína-Arginina N-Metiltransferases/genética
2.
JCI Insight ; 5(15)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32663189

RESUMO

We identified a potentially novel homozygous duplication involving the promoter region and exons 1-4 of the gene encoding type 2 cardiac ryanodine receptor (RYR2) that is responsible for highly penetrant, exertion-related sudden deaths/cardiac arrests in the Amish community without an overt phenotype to suggest RYR2-mediated catecholaminergic polymorphic ventricular tachycardia (CPVT). Homozygous RYR2 duplication (RYR2-DUP) induced pluripotent stem cell cardiomyocytes (iPSC-CMs) were generated from 2 unrelated patients. There was no difference in baseline Ca2+ handling measurements between WT-iPSC-CM and RYR2-DUP-iPSC-CM lines. However, compared with WT-iPSC-CMs, both patient lines demonstrated a dramatic reduction in caffeine-stimulated and isoproterenol-stimulated (ISO-stimulated) Ca2+ transient amplitude, suggesting RyR2 loss of function. There was a greater than 50% reduction in RYR2 transcript/RyR2 protein expression in both patient iPSC-CMs compared with WT. Delayed afterdepolarization was observed in the RYR2-DUP-iPSC-CMs but not in the WT-iPSC-CMs. Compared with WT-iPSC-CMs, there was significantly elevated arrhythmic activity in the RYR2-DUP-iPSC-CMs in response to ISO. Nadolol, propranolol, and flecainide reduced erratic activity by 8.5-fold, 6.8-fold, and 2.4-fold, respectively, from ISO challenge. Unlike the gain-of-function mechanism observed in RYR2-mediated CPVT, the homozygous multiexon duplication precipitated a dramatic reduction in RYR2 transcription and RyR2 protein translation, a loss of function in calcium handling, and a calcium-induced calcium release apparatus that is insensitive to catecholamines and caffeine.


Assuntos
Cálcio/metabolismo , Duplicação Gênica , Homozigoto , Células-Tronco Pluripotentes Induzidas/patologia , Miócitos Cardíacos/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/patologia , Adolescente , Estudos de Casos e Controles , Diferenciação Celular , Criança , Pré-Escolar , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Linhagem , Fenótipo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/metabolismo
3.
JAMA Cardiol ; 5(3): 13-18, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913406

RESUMO

Importance: The exome molecular autopsy may elucidate a pathogenic substrate for sudden unexplained death. Objective: To investigate the underlying cause of multiple sudden deaths in young individuals and sudden cardiac arrests that occurred in 2 large Amish families. Design, Setting, and Participants: Two large extended Amish families with multiple sudden deaths in young individuals and sudden cardiac arrests were included in the study. A recessive inheritance pattern was suggested based on an extended family history of sudden deaths in young individuals and sudden cardiac arrests, despite unaffected parents. A family with exercise-associated sudden deaths in young individuals occurring in 4 siblings was referred for postmortem genetic testing using an exome molecular autopsy. Copy number variant (CNV) analysis was performed on exome data using PatternCNV. Chromosomal microarray validated the CNV identified. The nucleotide break points of the CNV were determined by mate-pair sequencing. Samples were collected for this study between November 2004 and June 2019. Main Outcomes and Measures: The identification of an underlying genetic cause for sudden deaths in young individuals and sudden cardiac arrests consistent with the recessive inheritance pattern observed in the families. Results: A homozygous duplication, involving approximately 26 000 base pairs of intergenic sequence, RYR2's 5'UTR/promoter region, and exons 1 through 4 of RYR2, was identified in all 4 siblings of a family. Multiple distantly related relatives experiencing exertion-related sudden cardiac arrest also had the identical RYR2 homozygous duplication. A second, unrelated family with multiple exertion-related sudden deaths and sudden cardiac arrests in young individuals, with the same homozygous duplication, was identified. Several living, homozygous duplication-positive symptomatic patients from both families had nondiagnostic cardiologic testing, with only occasional ventricular ectopy occurring during exercise stress tests. Conclusions and Relevance: In this analysis, we identified a novel, highly penetrant, homozygous multiexon duplication in RYR2 among Amish youths with exertion-related sudden death and sudden cardiac arrest but without an overt phenotype that is distinct from RYR2-mediated catecholaminergic polymorphic ventricular tachycardia. Considering that no cardiac tests reliably identify at-risk individuals and given the high rate of consanguinity in Amish families, identification of unaffected heterozygous carriers may provide potentially lifesaving premarital counseling and reproductive planning.


Assuntos
Amish/genética , Morte Súbita Cardíaca/etiologia , Duplicação Gênica , Homozigoto , Linhagem , Esforço Físico , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Criança , Pré-Escolar , Consanguinidade , Variações do Número de Cópias de DNA , Eletrocardiografia , Éxons , Feminino , Testes Genéticos , Humanos , Masculino , Regiões Promotoras Genéticas , Irmãos , Taquicardia Ventricular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA