Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34050351

RESUMO

Promoter annotation is an important task in the analysis of a genome. One of the main challenges for this task is locating the border between the promoter region and the transcribing region of the gene, the transcription start site (TSS). The TSS is the reference point to delimit the DNA sequence responsible for the assembly of the transcribing complex. As the same gene can have more than one TSS, so to delimit the promoter region, it is important to locate the closest TSS to the site of the beginning of the translation. This paper presents TSSFinder, a new software for the prediction of the TSS signal of eukaryotic genes that is significantly more accurate than other available software. We currently are the only application to offer pre-trained models for six different eukaryotic organisms: Arabidopsis thaliana, Drosophila melanogaster, Gallus gallus, Homo sapiens, Oryza sativa and Saccharomyces cerevisiae. Additionally, our software can be easily customized for specific organisms using only 125 DNA sequences with a validated TSS signal and corresponding genomic locations as a training set. TSSFinder is a valuable new tool for the annotation of genomes. TSSFinder source code and docker container can be downloaded from http://tssfinder.github.io. Alternatively, TSSFinder is also available as a web service at http://sucest-fun.org/wsapp/tssfinder/.


Assuntos
Biologia Computacional/métodos , Eucariotos/genética , Genoma , Genômica/métodos , Regiões Promotoras Genéticas , Software , Sítio de Iniciação de Transcrição , Algoritmos , Bases de Dados Genéticas , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Navegador
2.
PLoS Comput Biol ; 9(10): e1003234, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098098

RESUMO

Discrete Markovian models can be used to characterize patterns in sequences of values and have many applications in biological sequence analysis, including gene prediction, CpG island detection, alignment, and protein profiling. We present ToPS, a computational framework that can be used to implement different applications in bioinformatics analysis by combining eight kinds of models: (i) independent and identically distributed process; (ii) variable-length Markov chain; (iii) inhomogeneous Markov chain; (iv) hidden Markov model; (v) profile hidden Markov model; (vi) pair hidden Markov model; (vii) generalized hidden Markov model; and (viii) similarity based sequence weighting. The framework includes functionality for training, simulation and decoding of the models. Additionally, it provides two methods to help parameter setting: Akaike and Bayesian information criteria (AIC and BIC). The models can be used stand-alone, combined in Bayesian classifiers, or included in more complex, multi-model, probabilistic architectures using GHMMs. In particular the framework provides a novel, flexible, implementation of decoding in GHMMs that detects when the architecture can be traversed efficiently.


Assuntos
Biologia Computacional/métodos , Cadeias de Markov , Análise de Sequência/métodos , Teorema de Bayes , Ilhas de CpG/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA