Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 63(12): 3647-3658, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37319347

RESUMO

The initial phases of drug discovery - in silico drug design - could benefit from first principle Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics (MD) simulations in explicit solvent, yet many applications are currently limited by the short time scales that this approach can cover. Developing scalable first principle QM/MM MD interfaces fully exploiting current exascale machines - so far an unmet and crucial goal - will help overcome this problem, opening the way to the study of the thermodynamics and kinetics of ligand binding to protein with first principle accuracy. Here, taking two relevant case studies involving the interactions of ligands with rather large enzymes, we showcase the use of our recently developed massively scalable Multiscale Modeling in Computational Chemistry (MiMiC) QM/MM framework (currently using DFT to describe the QM region) to investigate reactions and ligand binding in enzymes of pharmacological relevance. We also demonstrate for the first time strong scaling of MiMiC-QM/MM MD simulations with parallel efficiency of ∼70% up to >80,000 cores. Thus, among many others, the MiMiC interface represents a promising candidate toward exascale applications by combining machine learning with statistical mechanics based algorithms tailored for exascale supercomputers.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Ligantes , Proteínas/química , Desenho de Fármacos , Descoberta de Drogas , Teoria Quântica
2.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298290

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the biological and toxicological effects of structurally diverse chemicals, including halogenated aromatic hydrocarbons. In this work, we investigate the effects of the binding of the AhR prototypical ligand, TCDD, on the stability of the AhR:ARNT complex, as well as the mechanisms by which ligand-induced perturbations propagate to the DNA recognition site responsible for gene transcription. To this aim, a reliable structural model of the overall quaternary structure of the AhR:ARNT:DRE complex is proposed, based on homology modelling. The model shows very good agreement with a previous one and is supported by experimental evidence. Moreover, molecular dynamics simulations are performed to compare the dynamic behaviour of the AhR:ARNT heterodimer in the presence or absence of the TCDD. Analysis of the simulations, performed by an unsupervised machine learning method, shows that TCDD binding to the AhR PASB domain influences the stability of several inter-domain interactions, in particular at the PASA-PASB interface. The inter-domain communication network suggests a mechanism by which TCDD binding allosterically stabilizes the interactions at the DNA recognition site. These findings may have implications for the comprehension of the different toxic outcomes of AhR ligands and drug design.


Assuntos
Dibenzodioxinas Policloradas , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Ligantes , Dibenzodioxinas Policloradas/química , DNA/metabolismo
3.
Toxicol Appl Pharmacol ; 407: 115244, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32961130

RESUMO

Nuclear receptors (NRs) are key regulators of human health and constitute a relevant target for medicinal chemistry applications as well as for toxicological risk assessment. Several open databases dedicated to small molecules that modulate NRs exist; however, depending on their final aim (i.e., adverse effect assessment or drug design), these databases contain a different amount and type of annotated molecules, along with a different distribution of experimental bioactivity values. Stemming from these considerations, in this work we aim to provide a unified dataset, NURA (NUclear Receptor Activity) dataset, collecting curated information on small molecules that modulate NRs, to be intended for both pharmacological and toxicological applications. NURA contains bioactivity annotations for 15,247 molecules and 11 selected NRs, and it was obtained by integrating and curating data from toxicological and pharmacological databases (i.e., Tox21, ChEMBL, NR-DBIND and BindingDB). Our results show that NURA dataset is a useful tool to bridge the gap between toxicology- and medicinal-chemistry-related databases, as it is enriched in terms of number of molecules, structural diversity and covered atomic scaffolds compared to the single sources. To the best of our knowledge, NURA dataset is the most exhaustive collection of small molecules annotated for their modulation of the chosen nuclear receptors. NURA dataset is intended to support decision-making in pharmacology and toxicology, as well as to contribute to data-driven applications, such as machine learning. The dataset and the data curation pipeline can be downloaded free of charge on Zenodo at the following DOI: https://doi.org/10.5281/zenodo.3991561.


Assuntos
Bases de Dados Factuais , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Química Farmacêutica/métodos , Simulação por Computador , Coleta de Dados , Interpretação Estatística de Dados , Avaliação Pré-Clínica de Medicamentos , Humanos , Técnicas In Vitro , Modelos Moleculares , Bibliotecas de Moléculas Pequenas , Software , Toxicologia/métodos
4.
Gen Comp Endocrinol ; 299: 113592, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858041

RESUMO

The aryl hydrocarbon receptor (AHR) plays pleiotropic roles in the development and physiology of vertebrates in conjunction with xenobiotic and endogenous ligands. It is best known for mediating the toxic effects of dioxin-like pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While most vertebrates possess at least one AHR that binds TCDD tightly, amphibian AHRs bind TCDD with very low affinity. Previous analyses of AHRs from Xenopus laevis (a frog; order Anura) and Ambystoma mexicanum (a salamander; order Caudata) identified three amino acid residues in the ligand-binding domain (LBD) that underlie low-affinity binding. In X. laevis AHR1ß, these are A354, A370, and N325. Here we extend the analysis of amphibian AHRs to the caecilian Gymnopis multiplicata, representing the remaining extant amphibian order, Gymnophiona. G. multiplicata AHR groups with the monophyletic vertebrate AHR/AHR1 clade. The LBD includes all three signature residues of low TCDD affinity, and a structural homology model suggests that its architecture closely resembles those of other amphibians. In transactivation assays, the EC50 for reporter gene induction by TCDD was 17.17 nM, comparable to X. laevis AhR1ß (26.23 nM) and Ambystoma AHR (34.09 nM) and dramatically higher than mouse AhR (0.13 nM), a trend generally reflected in direct measures of TCDD binding. These shared properties distinguish amphibian AHRs from the high-affinity proteins typical of both vertebrate groups that diverged earlier (teleost fish) and those that appeared more recently (other tetrapods). These findings suggest the hypothesis that AHRs with low TCDD affinity represent a characteristic that evolved in a common ancestor of all three extant amphibian groups.


Assuntos
Ambystoma mexicanum/metabolismo , Dibenzodioxinas Policloradas/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Xenopus laevis/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Ligantes , Filogenia , Dibenzodioxinas Policloradas/química , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/genética , Homologia de Sequência
5.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252465

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the biological and toxicological effects of an AhR lacking the entire PASB structurally diverse chemicals, including halogenated aromatic hydrocarbons. Ligand-dependent transformation of the AhR into its DNA binding form involves a ligand-dependent conformational change, heat shock protein 90 (hsp90), dissociation from the AhR complex and AhR dimerization with the AhR nuclear translocator (ARNT) protein. The mechanism of AhR transformation was examined using mutational approaches and stabilization of the AhR:hsp90 complex with sodium molybdate. Insertion of a single mutation (F281A) in the hsp90-binding region of the AhR resulted in its constitutive (ligand-independent) transformation/DNA binding in vitro. Mutations of AhR residues within the Arg-Cys-rich region (R212A, R217A, R219A) and Asp371 (D371A) impaired AhR transformation without a significant effect on ligand binding. Stabilization of AhR:hsp90 binding with sodium molybdate decreased transformation/DNA binding of the wild type AhR but had no effect on constitutively active AhR mutants. Interestingly, transformation of the AhR in the presence of molybdate allowed detection of an intermediate transformation ternary complex containing hsp90, AhR, and ARNT. These results are consistent with a stepwise transformation mechanism in which binding of ARNT to the liganded AhR:hsp90 complex results in a progressive displacement of hsp90 and conversion of the AhR into its high affinity DNA binding form. The available molecular insights into the signaling mechanism of other Per-ARNT-Sim (PAS) domains and structural information on hsp90 association with other client proteins are consistent with the proposed transformation mechanism of the AhR.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transformação Celular Neoplásica/metabolismo , DNA/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Transformação Celular Neoplásica/genética , DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Ligantes , Modelos Moleculares , Molibdênio/farmacologia , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de Hidrocarboneto Arílico/química , Relação Estrutura-Atividade
6.
Int J Mol Sci ; 21(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526934

RESUMO

1,2-naphthoquinone (1,2-NQ) and 1,4-naphthoquinone (1,4-NQ) are clinically promising biologically active chemicals that have been shown to stimulate the aryl hydrocarbon receptor (AhR) signaling pathway, but whether they are direct or indirect ligands or activate the AhR in a ligand-independent manner is unknown. Given the structural diversity of AhR ligands, multiple mechanisms of AhR activation of gene expression, and species differences in AhR ligand binding and response, we examined the ability of 1,2-NQ and 1,4-NQ to bind to and activate the mouse and human AhRs using a series of in vitro AhR-specific bioassays and in silico modeling techniques. Both NQs induced AhR-dependent gene expression in mouse and human hepatoma cells, but were more potent and efficacious in human cells. 1,2-NQ and 1,4-NQ stimulated AhR transformation and DNA binding in vitro and was inhibited by AhR antagonists. Ligand binding analysis confirmed the ability of 1,2-NQ and 1,4-NQ to competitively bind to the AhR ligand binding cavity and the molecular determinants for interactions were predicted by molecular modeling methods. NQs were shown to bind distinctly differently from that of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and differences were also observed between species. Mutation of amino acid residues (F289, M334, and M342) involved in critical NQ:AhR binding interactions, decreased NQ- and AhR-dependent gene expression, consistent with a role for these residues in binding and activation of the AhR by NQs. These studies provide insights into the molecular mechanism of action of NQs and contribute to the development of emerging NQ-based therapeutics.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Naftoquinonas/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Ligação Competitiva , Células COS , Linhagem Celular , Chlorocebus aethiops , Citocromo P-450 CYP1A1/genética , DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutação , Naftoquinonas/metabolismo , Dibenzodioxinas Policloradas/farmacologia , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/genética , Especificidade da Espécie
7.
PLoS Comput Biol ; 14(2): e1006021, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29489822

RESUMO

Hypoxia inducible factors (HIFs) are transcription factors belonging to the basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) protein family with a role in sensing oxygen levels in the cell. Under hypoxia, the HIF-α degradation pathway is blocked and dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT) makes HIF-α transcriptionally active. Due to the common hypoxic environment of tumors, inhibition of this mechanism by destabilization of HIF-α:ARNT dimerization has been proposed as a promising therapeutic strategy. Following the discovery of a druggable cavity within the PAS-B domain of HIF-2α, research efforts have been directed to identify artificial ligands that can impair heterodimerization. Although the crystallographic structures of the HIF-2α:ARNT complex have elucidated the dimer architecture and the 0X3-inhibitor placement within the HIF-2α PAS-B, unveiling the inhibition mechanism requires investigation of how ligand-induced perturbations could dynamically propagate through the structure and affect dimerization. To this end, we compared evolutionary features, intrinsic dynamics and energetic properties of the dimerization interfaces of HIF-2α:ARNT in both the apo and holo forms. Residue conservation analysis highlighted inter-domain connecting elements that have a role in dimerization. Analysis of domain contributions to the dimerization energy demonstrated the importance of bHLH and PAS-A of both partners and of HIF-2α PAS-B domain in dimer stabilization. Among quaternary structure oscillations revealed by Molecular Dynamics simulations, the hinge-bending motion of the ARNT PAS-B domain around the flexible PAS-A/PAS-B linker supports a general model for ARNT dimerization in different heterodimers. Comparison of the HIF-2α:ARNT dynamics in the apo and 0X3-bound forms indicated a model of inhibition where the HIF-2α-PAS-B interfaces are destabilised as a result of water-bridged ligand-protein interactions and these local effects allosterically propagate to perturb the correlated motions of the domains and inter-domain communication. These findings will guide the design of improved inhibitors to contrast cell survival in tumor masses.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Simulação de Dinâmica Molecular , Domínios Proteicos , Animais , Cristalografia por Raios X , Ligantes , Camundongos , Mutação , Oscilometria , Oxigênio/química , Ligação Proteica , Multimerização Proteica , Termodinâmica , Transcrição Gênica , Água/química
8.
Int J Mol Sci ; 19(9)2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201897

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that modulates gene expression following its binding and activation by structurally diverse chemicals. Species differences in AhR functionality have been observed, with the mouse AhR (mAhR) and human AhR (hAhR) exhibiting significant differences in ligand binding, coactivator recruitment, gene expression and response. While the AhR agonist indirubin (IR) is a more potent activator of hAhR-dependent gene expression than the prototypical ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), it is a significantly less potent activator of the mAhR. DNA binding analysis confirmed the greater potency/efficacy of IR in stimulating transformation/DNA binding of the hAhR in vitro and domain-swapping experiments demonstrated that the enhanced response to IR was primarily due to the hAhR ligand binding domain (LBD). Site-directed mutagenesis and functional analysis studies revealed that mutation of H326 and A349 in the mAhR LBD to the corresponding residues in the hAhR LBD significantly increased the potency of IR. Since these mutations had no significant effect on ligand binding, these residues likely contribute to an enhanced efficiency of transformation/DNA binding by IR-bound hAhR. Molecular docking to mAhR LBD homology models further elucidated the different roles of the A375V mutation in TCDD and IR binding, as revealed by [³H]TCDD competitive binding results. These results demonstrate the differential binding of structurally diverse ligands within the LBD of a given AhR and confirm that amino acid differences within the LBD of AhRs contribute to significant species differences in ligand response.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Simulação por Computador , Humanos , Técnicas In Vitro , Indóis/farmacologia , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Dibenzodioxinas Policloradas/farmacologia , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Receptores de Hidrocarboneto Arílico/genética , Especificidade da Espécie
9.
PLoS Comput Biol ; 12(6): e1004981, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27295348

RESUMO

The Aryl hydrocarbon Receptor (AhR) is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT) protein, occurring through the Helix-Loop-Helix (HLH) and PER-ARNT-SIM (PAS) domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms underlying the functional activity of the AhR.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto , Biologia Computacional/métodos , Modelos Moleculares , Domínios Proteicos , Receptores de Hidrocarboneto Arílico , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Humanos , Mutação , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
10.
J Chem Inf Model ; 57(7): 1563-1578, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28616990

RESUMO

Protein dynamics play a critical role in ligand binding, and different models have been proposed to explain the relationships between protein motion and molecular recognition. Here, we present a study of ligand-binding processes associated with large conformational changes of a protein to elucidate the critical choices in ensemble-docking approaches for effective prediction of the binding geometry. Two study cases were selected in which binding involves different protein motions and intermolecular interactions and, accordingly, conformational selection and induced-fit mechanisms play different roles: binding of multiple ligands to the acetylcholine binding protein and highly specific binding of D-allose to the allose binding protein. Our results indicated that the ensemble-docking technique can provide reliable predictions of the structure of ligand-protein complexes, starting from simulations of the apo systems, when suitable methodological choices are made according to the different mechanistic scenarios. In particular, accelerated molecular dynamics simulations are suitable for conformational sampling when the unbound and bound states are separated by high energy barriers, provided that the acceleration parameters are carefully set to extensively sample the relevant conformations. A strategy specifically developed for geometric clustering of the binding site proved to be effective for selecting a set of conformations relevant to binding from the MD trajectory. Specific strategies have to be selected to incorporate different degrees of ligand-induced protein flexibility into the docking or pose-refinement steps.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Proteínas/metabolismo , Acetilcolina/metabolismo , Sítios de Ligação , Glucose/metabolismo , Ligantes , Ligação Proteica , Conformação Proteica
11.
Environ Sci Technol ; 49(11): 6993-7001, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25941739

RESUMO

Structural features of the aryl hydrocarbon receptor (AHR) can underlie species- and population-specific differences in its affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). These differences often explain variations in TCDD toxicity. Frogs are relatively insensitive to dioxin, and Xenopus AHRs bind TCDD with low affinity. Weak TCDD binding results from the combination of three residues in the ligand-binding domain: A354 and A370, and N325. Here we sought to determine whether this mechanism of weak TCDD binding is shared by other amphibian AHRs. We isolated an AHR cDNA from the Mexican axolotl (Ambystoma mexicanum). The encoded polypeptide contains identical residues at positions that confer low TCDD affinity to X. laevis AHRs (A364, A380, and N335), and homology modeling predicts they protrude into the binding cavity. Axolotl AHR bound one-tenth the TCDD of mouse AHR in velocity sedimentation analysis, and in transactivation assays, the EC50 for TCDD was 23 nM, similar to X. laevis AHR1ß (27 nM) and greater than AHR containing the mouse ligand-binding domain (0.08 nM). Sequence, modeled structure, and function indicate that axolotl AHR binds TCDD weakly, predicting that A. mexicanum lacks sensitivity toTCDD toxicity. We hypothesize that this characteristic of axolotl and Xenopus AHRs arose in a common ancestor of the Caudata and Anura.


Assuntos
Ambystoma mexicanum/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Sequência de Aminoácidos , Animais , Carbazóis/farmacologia , Genes Reporter , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Dibenzodioxinas Policloradas/química , Receptores de Hidrocarboneto Arílico/química , Ativação Transcricional/efeitos dos fármacos , Xenopus laevis/genética
12.
J Mol Biol ; 436(3): 168296, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37797832

RESUMO

The Aryl hydrocarbon Receptor (AhR) is a well-known sensor of xenobiotics; moreover, it is considered a promising drug target as it is involved in the regulation of many patho-physiological processes. For these reasons the study of its ligand-activated transcription mechanism has stimulated several studies for over twenty years. In this review we highlight the key role of molecular structural information in understanding the different steps of the signaling mechanism. The architecture of the AhR cytosolic complex, encompassing the hsp90 chaperone protein and the XAP2 and p23 co-chaperones, has become available in the last year thanks to Cryo-EM experiments. The structure of the AhR ligand-binding (PAS-B) domain has remained elusive for a long time; it has been predicted by homology modelling, based on known PAS systems, and its ligand-bound forms were modelled through ligand molecular docking. Although very recently some structural information on this domain has become available, considerable efforts are still needed to determine the binding geometries of the AhR key ligands by experimental high-resolution studies. On the other hand, the dimeric structure of AhR with the ARNT protein, bound to the specific DNA responsive element, was partially determined by X-ray crystallography and it was completed by homology modelling. On the whole the current structural knowledge of the main protein complexes that form over the AhR mechanism opens the way to confirm and further investigate the main steps of the proposed ligand-activated transcription mechanism of the AhR.


Assuntos
Proteínas de Choque Térmico HSP90 , Receptores de Hidrocarboneto Arílico , Proteínas de Choque Térmico HSP90/química , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Receptores de Hidrocarboneto Arílico/química , Cristalografia por Raios X , Multimerização Proteica , Humanos
13.
Nanoscale ; 16(8): 4063-4081, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38334981

RESUMO

Active targeting strategies have been proposed to enhance the selective uptake of nanoparticles (NPs) by diseased cells, and recent experimental findings have proven the effectiveness of this approach. However, no mechanistic studies have yet revealed the atomistic details of the interactions between ligand-activated NPs and integrins. As a case study, here we investigate, by means of advanced molecular dynamics simulations (MD) and machine learning methods (namely equilibrium MD, binding free energy calculations and training of self-organized maps), the interaction of a cyclic-RGD-conjugated PEGylated TiO2 NP (the nanodevice) with the extracellular segment of integrin αVß3 (the target), the latter experimentally well-known to be over-expressed in several solid tumors. Firstly, we proved that the cyclic-RGD ligand binding to the integrin pocket is established and kept stable even in the presence of the cumbersome realistic model of the nanodevice. In this respect, the unsupervised machine learning analysis allowed a detailed comparison of the ligand/integrin binding in the presence and in the absence of the nanodevice, which unveiled differences in the chemical features. Then, we discovered that unbound cyclic RGDs conjugated to the NP largely contribute to the interactions between the nanodevice and the integrin. Finally, by increasing the density of cyclic RGDs on the PEGylated TiO2 NP, we observed a proportional enhancement of the nanodevice/target binding. All these findings can be exploited to achieve an improved targeting selectivity and cellular uptake, and thus a more successful clinical outcome.


Assuntos
Integrina alfaVbeta3 , Neoplasias , Humanos , Integrina alfaVbeta3/metabolismo , Simulação de Dinâmica Molecular , Ligantes , Ligação Proteica , Oligopeptídeos/química , Aprendizado de Máquina , Polietilenoglicóis/química
14.
Biochemistry ; 52(10): 1746-54, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23394719

RESUMO

The aryl hydrocarbon receptor (AHR) is a Per-ARNT-Sim (PAS) family protein that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in vertebrates. Frogs are remarkably insensitive to TCDD, and AHRs from Xenopus laevis bind TCDD with low affinity. We sought to identify structural features of X. laevis AHR1ß associated with low TCDD sensitivity. Substitution of the entire ligand binding domain (LBD) with the corresponding sequence from mouse AHR(b-1) dramatically increased TCDD responsiveness in transactivation assays. To identify the amino acid residues responsible, we constructed a comparative model of the AHR1ß LBD using homologous domains of PAS proteins HIF2α and ARNT. The model revealed an internal cavity with dimensions similar to those of the putative binding cavity of mouse AHR(b-1), suggesting the importance of side chain interactions over cavity size. Of residues with side chains clearly pointing into the cavity, only two differed from the mouse sequence. When A354, located within a conserved ß-strand, was changed to serine, the corresponding mouse residue, the EC50 for TCDD decreased more than 15-fold. When N325 was changed to serine, the EC50 decreased 3-fold. When the mutations were combined, the EC50 decreased from 18.6 to 0.8 nM, the value nearly matching the TCDD sensitivity of mouse AHR. Velocity sedimentation analysis confirmed that mutant frog AHRs exhibited correspondingly increased levels of TCDD binding. We also assayed mutant AHRs for responsiveness to a candidate endogenous ligand, 6-formylindolo[3,2-b]carbazole (FICZ). Mutations that increased sensitivity to TCDD also increased sensitivity to FICZ. This comparative study represents a novel approach to discerning fundamental information about the structure of AHR and its interactions with biologically important agonists.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Carbazóis/metabolismo , Ligantes , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Dibenzodioxinas Policloradas/metabolismo , Estrutura Terciária de Proteína , Receptores de Hidrocarboneto Arílico/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Ativação Transcricional , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
15.
Biochemistry ; 52(4): 714-25, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23286227

RESUMO

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates the biological and toxic effects of a wide variety of structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While significant interspecies differences in AHR ligand binding specificity, selectivity, and response have been observed, the structural determinants responsible for those differences have not been determined, and homology models of the AHR ligand-binding domain (LBD) are available for only a few species. Here we describe the development and comparative analysis of homology models of the LBD of 16 AHRs from 12 mammalian and nonmammalian species and identify the specific residues contained within their ligand binding cavities. The ligand-binding cavity of the fish AHR exhibits differences from those of mammalian and avian AHRs, suggesting a slightly different TCDD binding mode. Comparison of the internal cavity in the LBD model of zebrafish (zf) AHR2, which binds TCDD with high affinity, to that of zfAHR1a, which does not bind TCDD, revealed that the latter has a dramatically shortened binding cavity due to the side chains of three residues (Tyr296, Thr386, and His388) that reduce the amount of internal space available to TCDD. Mutagenesis of two of these residues in zfAHR1a to those present in zfAHR2 (Y296H and T386A) restored the ability of zfAHR1a to bind TCDD and to exhibit TCDD-dependent binding to DNA. These results demonstrate the importance of these two amino acids and highlight the predictive potential of comparative analysis of homology models from diverse species. The availability of these AHR LBD homology models will facilitate in-depth comparative studies of AHR ligand binding and ligand-dependent AHR activation and provide a novel avenue for examining species-specific differences in AHR responsiveness.


Assuntos
Substituição de Aminoácidos , Proteínas Aviárias/química , Receptores de Hidrocarboneto Arílico/química , Proteínas de Peixe-Zebra/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/fisiologia , Sítios de Ligação , Células COS , Chlorocebus aethiops , Poluentes Ambientais/química , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Dibenzodioxinas Policloradas/química , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/fisiologia , Homologia Estrutural de Proteína , Ativação Transcricional , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
16.
Nanoscale ; 15(17): 7909-7919, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066796

RESUMO

Inorganic nanoparticles show promising properties that allow them to be efficiently used as drug carriers. The main limitation in this type of application is currently the drug loading capacity, which can be overcome with a proper functionalization of the nanoparticle surface. In this study, we present, for the first time, a computational approach based on metadynamics to estimate the binding free energy of the doxorubicin drug (DOX) to a functionalized TiO2 nanoparticle under different pH conditions. On a thermodynamic basis, we demonstrate the robustness of our approach to capture the overall mechanism behind the pH-triggered release of DOX due to environmental pH changes. Notably, binding free energy estimations align well with what is expected for a pH-sensitive drug delivery system. Based on our results, we envision the use of metadynamics as a promising computational tool for the rational design and in silico optimization of organic ligands with improved drug carrier properties.


Assuntos
Doxorrubicina , Nanopartículas , Concentração de Íons de Hidrogênio , Doxorrubicina/farmacologia , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Nanopartículas/química , Liberação Controlada de Fármacos
17.
ACS Biomater Sci Eng ; 9(11): 6123-6137, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831005

RESUMO

Atomistic details on the mechanism of targeting activity by biomedical nanodevices of specific receptors are still scarce in the literature, where mostly ligand/receptor pairs are modeled. Here, we use atomistic molecular dynamics (MD) simulations, free energy calculations, and machine learning approaches on the case study of spherical TiO2 nanoparticles (NPs) functionalized with folic acid (FA) as the targeting ligand of the folate receptor (FR). We consider different FA densities on the surface and different anchoring approaches, i.e., direct covalent bonding of FA γ-carboxylate or through polyethylene glycol spacers. By molecular docking, we first identify the lowest energy conformation of one FA inside the FR binding pocket from the X-ray crystal structure, which becomes the starting point of classical MD simulations in a realistic physiological environment. We estimate the binding free energy to be compared with the existing experimental data. Then, we increase complexity and go from the isolated FA to a nanosystem decorated with several FAs. Within the simulation time framework, we confirm the stability of the ligand-receptor interaction, even in the presence of the NP (with or without a spacer), and no significant modification of the protein secondary structure is observed. Our study highlights the crucial role played by the spacer, FA protonation state, and density, which are parameters that can be controlled during the nanodevice preparation step.


Assuntos
Simulação de Dinâmica Molecular , Polietilenoglicóis , Simulação de Acoplamento Molecular , Ligantes , Polietilenoglicóis/química , Ácido Fólico/química , Ácido Fólico/metabolismo
18.
J Chem Theory Comput ; 18(3): 1957-1968, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35213804

RESUMO

Understanding the process of ligand-protein recognition is important to unveil biological mechanisms and to guide drug discovery and design. Enhanced-sampling molecular dynamics is now routinely used to simulate the ligand binding process, resulting in the need for suitable tools for the analysis of large data sets of binding events. Here, we designed, implemented, and tested PathDetect-SOM, a tool based on self-organizing maps to build concise visual models of the ligand binding pathways sampled along single simulations or replicas. The tool performs a geometric clustering of the trajectories and traces the pathways over an easily interpretable 2D map and, using an approximate transition matrix, it can build a graph model of concurrent pathways. The tool was tested on three study cases representing different types of problems and simulation techniques. A clear reconstruction of the sampled pathways was derived in all cases, and useful information on the energetic features of the processes was recovered. The tool is available at https://github.com/MottaStefano/PathDetect-SOM.


Assuntos
Algoritmos , Redes Neurais de Computação , Análise por Conglomerados , Ligantes , Simulação de Dinâmica Molecular
19.
Antioxidants (Basel) ; 11(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453298

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose activity can be modulated by polyphenols, such as curcumin. AhR and curcumin have evolutionarily conserved effects on aging. Here, we investigated whether and how the AhR mediates the anti-aging effects of curcumin across species. Using a combination of in vivo, in vitro, and in silico analyses, we demonstrated that curcumin has AhR-dependent or -independent effects in a context-specific manner. We found that in Caenorhabditis elegans, AhR mediates curcumin-induced lifespan extension, most likely through a ligand-independent inhibitory mechanism related to its antioxidant activity. Curcumin also showed AhR-independent anti-aging activities, such as protection against aggregation-prone proteins and oxidative stress in C. elegans and promotion of the migratory capacity of human primary endothelial cells. These AhR-independent effects are largely mediated by the Nrf2/SKN-1 pathway.

20.
BMC Bioinformatics ; 12: 158, 2011 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-21569575

RESUMO

BACKGROUND: Molecular dynamics (MD) simulations are powerful tools to investigate the conformational dynamics of proteins that is often a critical element of their function. Identification of functionally relevant conformations is generally done clustering the large ensemble of structures that are generated. Recently, Self-Organising Maps (SOMs) were reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data mining problems. We present a novel strategy to analyse and compare conformational ensembles of protein domains using a two-level approach that combines SOMs and hierarchical clustering. RESULTS: The conformational dynamics of the α-spectrin SH3 protein domain and six single mutants were analysed by MD simulations. The Cα's Cartesian coordinates of conformations sampled in the essential space were used as input data vectors for SOM training, then complete linkage clustering was performed on the SOM prototype vectors. A specific protocol to optimize a SOM for structural ensembles was proposed: the optimal SOM was selected by means of a Taguchi experimental design plan applied to different data sets, and the optimal sampling rate of the MD trajectory was selected. The proposed two-level approach was applied to single trajectories of the SH3 domain independently as well as to groups of them at the same time. The results demonstrated the potential of this approach in the analysis of large ensembles of molecular structures: the possibility of producing a topological mapping of the conformational space in a simple 2D visualisation, as well as of effectively highlighting differences in the conformational dynamics directly related to biological functions. CONCLUSIONS: The use of a two-level approach combining SOMs and hierarchical clustering for conformational analysis of structural ensembles of proteins was proposed. It can easily be extended to other study cases and to conformational ensembles from other sources.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Algoritmos , Animais , Galinhas , Mutação Puntual , Estrutura Terciária de Proteína , Espectrina/química , Espectrina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA