Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Pathol ; 188(12): 2902-2911, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30248342

RESUMO

Patient-derived xenografts retain the genotype of the parent tumors more readily than tumor cells maintained in culture. The two previously reported clival chordoma xenografts were derived from recurrent tumors after radiation. To study the genetics of clival chordoma in the absence of prior radiation exposure we established a patient-derived xenograft at primary resection of a clival chordoma. Epicranial grafting of clival chordoma collected during surgery was performed. Tumor growth was established in a nonobese diabetic/severe combined immunodeficiency mouse and tumors have been passaged serially for seven generations. Physaliferous cell architecture was shown in the regenerated tumors, which stained positive for Brachyury, cytokeratin, and S100 protein. The tumors showed bone invasion. Single-nucleotide polymorphism analysis of the tumor xenograft was compared with the parental tumor. Copy number gain of the T gene (brachyury) and heterozygous loss of cyclin dependent kinase inhibitor 2A (CDKN2A) was observed. Heterozygous loss of the tumor-suppressor fragile histidine triad (FHIT) gene also was observed, although protein expression was preserved. Accumulation of copy number losses and gains as well as increased growth rate was observed over three generations. The patient-derived xenograft reproduces the phenotype of clival chordoma. This model can be used in the future to study chordoma biology and to assess novel treatments.


Assuntos
Biomarcadores Tumorais/genética , Cordoma/genética , Instabilidade Genômica , Polimorfismo de Nucleotídeo Único , Neoplasias da Base do Crânio/genética , Idoso , Animais , Apoptose , Proliferação de Células , Cordoma/patologia , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias da Base do Crânio/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Neuro Oncol ; 26(2): 226-235, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-37713135

RESUMO

Brain tumors are the most common solid tumor in children and the leading cause of cancer-related deaths. Over the last few years, improvements have been made in the diagnosis and treatment of children with Central Nervous System tumors. Unfortunately, for many patients with high-grade tumors, the overall prognosis remains poor. Lower survival rates are partly attributed to the lack of efficacious therapies. The advent and success of immune checkpoint inhibitors (ICIs) in adults have sparked interest in investigating the utility of these therapies alone or in combination with other drug treatments in pediatric patients. However, to achieve improved clinical outcomes, the establishment and selection of relevant and robust preclinical pediatric high-grade brain tumor models is imperative. Here, we review the information that influenced our model selection as we embarked on an international collaborative study to test ICIs in combination with epigenetic modifying agents to enhance adaptive immunity to treat pediatric brain tumors. We also share challenges that we faced and potential solutions.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Humanos , Criança , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Imunoterapia , Neoplasias do Sistema Nervoso Central/terapia
3.
Oncogene ; 41(14): 2079-2094, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181737

RESUMO

The endocytic adaptor protein Numb acts as a tumor suppressor through downregulation of oncogenic pathways in multiple cancer types. The identification of splicing alterations giving rise to changes in Numb protein isoform expression indicate that Numb also has tumor promoting activity, though the underlying mechanisms are unknown. Here we report that NUMB exon 9 inclusion, which results in production of a protein isoform with an additional 49 amino acids, is a feature of multiple cancer types including all subtypes of breast cancer and correlates with worse progression-free survival. Specific deletion of exon 9-included Numb isoforms (Exon9in) from breast cancer cells reduced cell growth and prevents spontaneous lung metastasis in a mouse model. Quantitative proteome profiling showed that loss of Exon9in causes downregulation of membrane receptors and adhesion molecules, as well as proteins involved in extracellular matrix organization and the epithelial-mesenchymal transition (EMT) state. In addition, exon 9 deletion caused remodeling of the endocytic network, decreased ITGß5 surface localization, cell spreading on vitronectin and downstream signaling to ERK and SRC. Together these observations suggest that Exon9in isoform expression disrupts the endocytic trafficking functions of Numb, resulting in increased surface expression of ITGß5 as well as other plasma membrane proteins to promote cell adhesion, EMT, and tumor metastasis.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Éxons/genética , Feminino , Genes Supressores de Tumor , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo
4.
J Control Release ; 330: 1034-1045, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33188825

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is a surgically unresectable and devasting tumour in children. To date, there are no effective chemotherapeutics despite a myriad of clinical trials. The intact blood-brain barrier (BBB) is likely responsible for the limited clinical response to chemotherapy. MRI-guided focused ultrasound (MRgFUS) is a promising non-invasive method for treating CNS tumours. Moreover, MRgFUS allows for the temporary and repeated disruption of the BBB. Our group previously reported the feasibility of temporary BBB opening within the normal murine brainstem using MRgFUS following intravenous (IV) administration of microbubbles. In the current study, we set out to test the effectiveness of targeted chemotherapy when paired with MRgFUS in murine models of DIPG. Doxorubicin was selected from a drug screen consisting of conventional chemotherapeutics tested on patient-derived cell lines. We studied the RCAS/Tv-a model where RCAS-Cre, RCAS-PDGFB, and RCAS-H3.3K27M were used to drive tumourigenesis upon injection in the pons. We also used orthotopically injected SU-DIPG-6 and SU-DIPG-17 xenografts which demonstrated a diffusely infiltrative tumour growth pattern similar to human DIPG. In our study, SU-DIPG-17 xenografts were more representative of human DIPG with an intact BBB. Following IV administration of doxorubicin, MRgFUS-treated animals exhibited a 4-fold higher concentration of drug within the SU-DIPG-17 brainstem tumours compared to controls. Moreover, the volumetric tumour growth rate was significantly suppressed in MRgFUS-treated animals whose tumours also exhibited decreased Ki-67 expression. Herein, we provide evidence for the ability of MRgFUS to enhance drug delivery in a mouse model of DIPG. These data provide critical support for clinical trials investigating MRgFUS-mediated BBB opening, which may ameliorate DIPG chemotherapeutic approaches in children.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Preparações Farmacêuticas , Animais , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Neoplasias do Tronco Encefálico/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Imageamento por Ressonância Magnética , Camundongos
5.
Cell Calcium ; 92: 102307, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33080445

RESUMO

Glioblastoma (GBM) is the most common malignant primary brain tumour originating in the CNS. Median patient survival is <15 months with standard treatment which consists of surgery alongside radiation therapy and temozolomide chemotherapy. However, because of the aggressive nature of GBM, and the significant toxicity of these adjuvant therapies, long-term therapeutic effects are unsatisfactory. Thus, there is urgency to identify new drug targets for GBM. Recent evidence shows that the transient receptor potential melastatin 7 (TRPM7) cation channel is aberrantly upregulated in GBM and its inhibition leads to reduction of GBM cellular functions. This suggests that TRPM7 may be a potential drug target for GBM treatment. In this study, we assessed the effects of the specific TRPM7 antagonist waixenicin A on human GBM cell lines U87 or U251 both in vitro and in vivo. First, we demonstrated in vitro that application of waixenicin A reduced TRPM7 protein expression and inhibited the TRPM7-like currents in GBM cells. We also observed reduction of GBM cell viability, migration, and invasion. Using an intracranial xenograft GBM mouse model, we showed that with treatment of waixenicin A, there was increased cleaved caspase 3 activity, alongside reduction in Ki-67, cofilin, and Akt activity in vivo. Together, these data demonstrate higher GBM cell apoptosis, and lower proliferation, migration, invasion and survivability following treatment with waixenicin A.


Assuntos
Acetatos/farmacologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diterpenos/farmacologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Canais de Cátion TRPM/antagonistas & inibidores , Acetatos/administração & dosagem , Fatores de Despolimerização de Actina/metabolismo , Animais , Caspase 3/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/administração & dosagem , Feminino , Humanos , Antígeno Ki-67/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Biológicos , Invasividade Neoplásica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Cátion TRPM/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Control Release ; 281: 29-41, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29753957

RESUMO

Magnetic Resonance Image-guided Focused Ultrasound (MRgFUS) has been used to achieve transient blood brain barrier (BBB) opening without tissue injury. Delivery of a targeted ultrasonic wave causes an interaction between administered microbubbles and the capillary bed resulting in enhanced vessel permeability. The use of MRgFUS in the brainstem has not previously been shown but could provide value in the treatment of tumours such as Diffuse Intrinsic Pontine Glioma (DIPG) where the intact BBB has contributed to the limited success of chemotherapy. Our primary objective was to determine whether the use of MRgFUS in this eloquent brain region could be performed without histological injury and functional deficits. Our secondary objective was to select an effective chemotherapeutic against patient derived DIPG cell lines and demonstrate enhanced brainstem delivery when combined with MRgFUS in vivo. Female Sprague Dawley rats were randomised to one of four groups: 1) Microbubble administration but no MRgFUS treatment; 2) MRgFUS only; 3) MRgFUS + microbubbles; and 4) MRgFUS + microbubbles + cisplatin. Physiological assessment was performed by monitoring of heart and respiratory rates. Motor function and co-ordination were evaluated by Rotarod and grip strength testing. Histological analysis for haemorrhage (H&E), neuronal nuclei (NeuN) and apoptosis (cleaved Caspase-3) was also performed. A drug screen of eight chemotherapy agents was conducted in three patient-derived DIPG cell lines (SU-DIPG IV, SU-DIPG XIII and SU-DIPG XVII). Doxorubicin was identified as an effective agent. NOD/SCID/GAMMA (NSG) mice were subsequently administered with 5 mg/kg of intravenous doxorubicin at the time of one of the following: 1) Microbubbles but no MRgFUS; 2) MRgFUS only; 3) MRgFUS + microbubbles and 4) no intervention. Brain specimens were extracted at 2 h and doxorubicin quantification was conducted using liquid chromatography mass spectrometry (LC/MS). BBB opening was confirmed by contrast enhancement on T1-weighted MR imaging and positive Evans blue staining of the brainstem. Normal cardiorespiratory parameters were preserved. Grip strength and Rotarod testing demonstrating no decline in performance across all groups. Histological analysis showed no evidence of haemorrhage, neuronal loss or increased apoptosis. Doxorubicin demonstrated cytotoxicity against all three cell lines and is known to have poor BBB permeability. Quantities measured in the brainstem of NSG mice were highest in the group receiving MRgFUS and microbubbles (431.5 ng/g). This was significantly higher than in mice who received no intervention (7.6 ng/g). Our data demonstrates both the preservation of histological and functional integrity of the brainstem following MRgFUS for BBB opening and the ability to significantly enhance drug delivery to the region, giving promise to the treatment of brainstem-specific conditions.


Assuntos
Antineoplásicos/administração & dosagem , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Doxorrubicina/administração & dosagem , Glioma/tratamento farmacológico , Ondas Ultrassônicas , Animais , Antineoplásicos/uso terapêutico , Encéfalo/metabolismo , Tronco Encefálico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos , Liberação Controlada de Fármacos , Feminino , Camundongos SCID , Microbolhas , Permeabilidade , Ratos Sprague-Dawley , Distribuição Tecidual
7.
Ultrasound Med Biol ; 40(12): 2857-67, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25308942

RESUMO

The purpose of this study was to measure changes in cardiac function as cardiomyopathy progresses in a mouse model of Duchenne muscular dystrophy using 3-D ECG-gated echocardiography. This study is the first to correlate cardiac volumes acquired using 3-D echocardiography with those acquired using retrospectively gated micro-computed tomography (CT). Both were further compared with standard M-mode echocardiography and histologic analyses. We found that although each modality measures a decrease in cardiac function as disease progresses in mdx/utrn(-/-) mice (n = 5) compared with healthy C57BL/6 mice (n = 8), 3-D echocardiography has higher agreement with gold-standard measurements acquired by gated micro-CT, with little standard deviation between measurements. M-Mode echocardiography measurements, in comparison, exhibit considerably greater variability and user bias. Given the radiation dose associated with micro-CT and the geometric assumptions made in M-mode echocardiography to calculate ventricular volume, we suggest that use of 3-D echocardiography has important advantages that may allow for the measurement of early disease changes that occur before overt cardiomyopathy.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca/métodos , Ecocardiografia Tridimensional/métodos , Interpretação de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distrofia Muscular de Duchenne , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA